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Reflection off a mirror
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Electromagnetic radiation incident upon a perfect conductor induces a current
density at the surface of the material. This surface current density is the solution
of an integral equation, and it is shown that for a flat surface this equation has
a very simple solution. The current density at a point of the surface is determined
by the incident magnetic field at the same point. The surface current density
generates an electromagnetic field, and the total radiation field is the sum of this
field and the incident field. It is shown explicitly that inside the material the field
of the current density cancels exactly the incident field. The reflected field can be
expressed as an integral over the known surface current density, and is therefore
determined by the incident magnetic field at the surface only. When the source of
the incident field is known, the reflected field can be expressed in terms of a source
function, which is determined by the current density of the source. It is shown that
this approach leads to a simple way of constructing the mirror image of an
arbitrary source, and we illustrate the concept by determining the mirror image
of an electric quadrupole.

1. Introduction

Scattering of electromagnetic radiation by an object or a structured surface of
infinite extent has been the subject of numerous studies. The simplest case is the
reflection and transmission of a plane polarized wave by a flat semi-infinite medium,
or a by an infinite layer. The reflected and transmitted waves are again plane
polarized waves, and their amplitudes are the Fresnel coefficients [1]. The problem of
scattering of a plane wave by a dielectric or metallic sphere (Mie theory) is another
example of a problem that can be solved analytically [2, 3]. When the object or the
surface is more complex, one usually has to resort to numerical methods. In the
differential equation approach the incident field, the scattered field, and the field in
the material are expanded onto a complete set of functions. Then boundary
conditions are imposed, which leads to a set of linear equations for the expansion
coefficients, and this set is solved numerically [4–6]. In the integral equation
approach, the scattered field and the field inside the material are a solution of a linear
integral equation, with the incident field as the inhomogeneous term. The field inside
the material and the scattered field are expanded onto a complete set of functions,
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which then leads to a set of linear equations for the expansion coefficients. This is
known as the Method of Moments [7]. There exist many variations on this approach
[8], because of the existence of a variety of integrals of Maxwell’s equations.
Particularly interesting is the case where the object or the surface is a perfect
conductor. Then there is no field inside the material, so only the scattered field has to
be considered. Scattering of a plane wave by a perfectly conducting object or surface
has been studied for a large array of geometries [9–17].

A problem of a different nature arises when the incident field is not a plane wave,
but radiation emitted by a particular source. For example, when an electric dipole is
located near a slab of dielectric or metallic material, then part of the radiation
reflects and part of it is transmitted by the layer. Dipole radiation contains both
travelling and evanescent waves, and upon transmission an evanescent wave can be
converted into a travelling wave, and vice versa. This problem can be solved in closed
form [18], and the method can be generalized to multipole fields of arbitrary order
[19, 20]. The method of solution relies on an angular spectrum representation of the
multipole fields. Such a representation is a superposition of plane waves, and the
reflection and transmission of each plane wave is accounted for by Fresnel
coefficients. For a multipole near a perfect conductor, the reflected field can also be
obtained by the method of images [21]. Here we consider the reflection of an
arbitrary incident field by a flat perfectly-conducting surface (mirror), and we show
that this problem can be solved in closed form. When the source of the incident
field is known, this solution also provides a method for obtaining the mirror image
of this source.

2. Reflection off a perfect conductor

Let us first consider an electromagnetic field, incident upon the surface of a perfect
conductor, as shown in figure 1. Inside the perfect conductor there is no field and
no current density. The only current appears as a surface current density i(r), which is
a vector in the local tangent plane. We assume a harmonic time dependence
with angular frequency ! so that i(r) is the complex amplitude of i(r, t),
e.g. i(r, t)¼Re[i(r)exp(�i!t)], and similarly for other time dependent fields.
The vector potential, or Hertz vector, for i(r) is

PðrÞ ¼
�o

4�

ð
dS0iðr0Þgðr� r0Þ, ð1Þ

with

gðr� r0Þ ¼
eikojr�r0j

jr� r0j
, ð2Þ

the Green’s function for the scalar Helmholtz equation, and ko¼!/c. The integral in
equation (1) runs over the entire surface. The magnetic field generated by the surface
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current density is r�P(r), and the total magnetic field is

BðrÞ ¼ BðrÞinc þ r � PðrÞ, ð3Þ

with B(r)inc the incident magnetic field. Explicitly,

BðrÞ ¼ BðrÞinc �
�o

4�

ð
dS0iðr0Þ � rgðr� r0Þ: ð4Þ

Equations (3) and (4) hold for any point r not on the boundary surface S.
For a field point r in the vacuum, the reflected field is

BðrÞr ¼ r � PðrÞ: ð5Þ

On the other hand, for a field point r in the material we have B(r)¼ 0, and therefore
the field generated by i(r) must cancel exactly the incident field. When we move the
field point r across S from the material to the vacuum, the magnetic field jumps from
zero to some finite value. This discontinuity comes from the integral on the
right-hand side of equation (4). Let us indicate by rþ and r� field points just outside
and inside the medium, and near point r in S. With a limit procedure it can be shown
using equation (4) that [22]

Bðr�Þ ¼ BðrÞinc �
1

2
�oiðrÞ � n̂ðrÞ �

�o

4�
P

ð
dS0iðr0Þ � rgðr� r0Þ, ð6Þ

where n̂ðrÞ is the unit normal on S at r, directed from the material to the vacuum.
For the integral on the right-hand side we take point r in S. The factor rg(r� r0)
in the integrand of the integral has a singularity at r0 ¼ r, and it is understood that
we leave out a small circle around r, and that in the end we let the radius of
this circle shrink to zero. In this sense, the integral is a principal value integral,

Vacuum

Perfect conductor

S

−
+

Inc
i(r)

n̂(r)

r

Figure 1. Surface S is the boundary between vacuum and a perfectly conducting metal.
An incident field induces a current density i(r) on the surface. The current density generates
an electromagnetic field, which is the reflected field in vacuum, and in the material this field
cancels exactly the incident field, so that there is no field inside the material. The current
density on the surface is a solution of equation (8), which has the incident magnetic field
as inhomogeneous term.

Reflection off a mirror 47



which is indicated by P. This integral is the same for B(rþ) and B(r�), so for the

difference we obtain

BðrþÞ � Bðr�Þ ¼ �oiðrÞ � n̂ðrÞ, ð7Þ

and this is the usual boundary condition for the magnetic field at an interface.

Therefore, this boundary condition is automatically satisfied by equation (4), no

matter what the surface current density is. Then, inside the perfect conductor the

magnetic field is zero, so we have B(r�)¼ 0. From equation (6) we then find

1
2�oiðrÞ � n̂ðrÞ þ

�o

4�
P

ð
dS0iðr0Þ � rgðr� r0Þ ¼ BðrÞinc: ð8Þ

Given the incident field, this is a linear integral equation for i(r), with B(r)inc
as the inhomogeneous term. In a numerical approach, this equation is solved with

the Method of Moments. After solving, P(r) is computed with equation (1), and

then the reflected field follows by taking the curl, according to equation (5). Finally,

the reflected electric field follows from a Maxwell equation:

EðrÞr ¼
ic2

!
r � BðrÞr: ð9Þ

3. Current density in a mirror

Equation (8) can only be solved for i(r) analytically if the shape of the surface is

simple enough. For instance, it can be solved in closed form for a sphere in terms of

vector spherical harmonics. Another example, which we shall consider here, is a flat

surface. The gradient of the Green’s function is

rgðr� r0Þ ¼ ðr� r0Þ
iko

jr� r0j2
�

1

jr� r0j3

� �
eikojr�r0j: ð10Þ

Let the surface be the xy-plane, and let the material occupy the region z50.

The integration in equation (8) runs over the xy-plane, so the point r0 is in the

xy-plane. For the principal value integral, point r is also in the xy-plane, and

therefore the vector r� r0 lies in the xy-plane, and so does rg(r� r0). Since the

current density i(r0) is also in the xy-plane we see that i(r0)�rg(r� r0) is along the

z-axis. Consequently, the principal value integral in equation (8) is a vector along

the z-axis. We now take the cross product of equation (8) with ez. The contribution

from the integral vanishes, and ez � ½iðrÞ � n̂ðrÞ� ¼ iðrÞ, since n̂ðrÞ ¼ ez. Equation (8)

becomes

iðrÞ ¼
2

�o
ez � BðrÞinc, ð11Þ

which is the explicit solution for i(r), given the incident magnetic field. Apparently,

for a flat surface the current density at point r on the surface only depends on the

value of the incident magnetic field at that same point. In the general case of
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equation (8), the current density at r depends on the current density at every

other point r0 through the principal value integral. Interesting to note is that if

we set B(r�)¼ 0 in the boundary condition (7), and then take the cross product

with ez we find

iðrÞ ¼
1

�o
ez � BðrþÞ: ð12Þ

Here, B(rþ) is the total field just outside the medium, which is the sum of the incident

field and the reflected field. The additional factor of 2 in equation (11) indicates

that the incident field and the reflected field contribute equally to i(r) at point r.

From equation (6) with B(r�)¼ 0 we have

BðrþÞ ¼ �oiðrÞ � ez, ð13Þ

so B(rþ) is a vector in the xy-plane. The incident and the reflected field will both have

a component along the z-axis at z¼ 0þ, and these components cancel exactly.

4. The magnetic field

With the current density in the mirror given by equation (11), the vector potential

(1) becomes

PðrÞ ¼
1

2�
ez �

ð
dS0Bðr0Þincgðr� r0Þ: ð14Þ

Taking the curl and simplifying with a vector identity then yields for the magnetic

field

BðrÞ ¼ BðrÞinc �
1

2�

ð
dS0

�
Bðr0Þinc

@

@z
gðr� r0Þ

�

þ
1

2�
ez

ð
dS0½Bðr0Þinc � rgðr� r0Þ�:

ð15Þ

Since the integrals run over the xy-plane, this shows explicitly that the total magnetic

field off the xy-plane is determined completely by the given value of the incident field

B(r)inc in the xy-plane. For z40, the sum of the second and the third term on the

right-hand side is the reflected field. For z50, the three terms on the right-hand side

should add up to zero, since the magnetic field in the material is zero. We shall show

this in section 6.
The magnetic field can also be expressed in terms of an angular spectrum, which

is particularly useful if the source of the incident radiation is known. We adopt

Weyl’s representation of the Green’s function [23]

gðr� r0Þ ¼
i

2�

ð
d2kjj

1

�
eikjj �ðr�r0Þþi�jz�z0j: ð16Þ

Reflection off a mirror 49



Vector kk is a vector in the xy-plane, and the integration is a surface integral over
the kk plane. The parameter � is defined by

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o � k2jj

q
, kjj < ko

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2jj � k2o

q
, kjj > ko

8<
: , ð17Þ

with kk the magnitude of kk. For kk5ko, � is real and the partial wave is travelling,
whereas for kk4ko the partial wave is evanescent. These waves decay exponentially
away from the plane z¼ z0. We substitute the expression (16) into equation (15),
with z0 ¼ 0 since r0 is in the xy-plane, and work out the derivatives. We then obtain
the alternative representation for the magnetic field near the mirror

BðrÞ ¼ BðrÞinc þ
1

4�2

ð
d2kjj

1

�
� sgnðzÞ ~BðkjjÞinc
�

�ez ~BðkjjÞinc � kjj þ � sgnðzÞez
� �� �	

eikjj �rþi�jzj, ð18Þ

with

~BðkjjÞinc ¼

ð
dS0Bðr0Þince

�ikjj�r
0

, ð19Þ

the spatial Fourier transform of B(r)inc in the xy-plane.
Expression (18) holds for both z40 and z50. For z40, we have sgn(z)¼ 1, and

with the notation

K� ¼ kjj � �ez, ð20Þ

the result (18) can be simplified to

BðrÞ ¼ BðrÞinc �
1

4�2

ð
d2kjj

1

�
eiKþ�rKþ � ez � ~BðkjjÞinc

� �
, z > 0: ð21Þ

The second term on the right-hand side is the reflected field. Similarly, for z50 we
can write equation (18) as

BðrÞ ¼ BðrÞinc �
1

4�2

ð
d2kjje

iK��r ~BðkjjÞinc

�
1

4�2
ez

ð
d2kjj

1

�
eiK��r K� � ~BðkjjÞinc

� �
, z < 0, ð22Þ

and this should be zero.

5. Source of the incident field

Equations (21) and (22) give the magnetic field for an arbitrary incident field B(r)inc.
However, we have not used any property of this field, and in particular that it has
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to satisfy Maxwell’s equations, when combined with the corresponding electric field.
Let us now consider the situation where the incident field is emitted by a localized
source in the region z40, as shown in figure 2. The source has a given current
density j(r), and the radiated magnetic field is the curl of the vector potential, as in
equation (4), but now the integral runs over the volume of the source. We have for
the field generated by the source

BðrÞ ¼ �
�o

4�

ð
d3r0jðr0Þ � rgðr� r0Þ: ð23Þ

In order to obtain an angular spectrum representation of this expression, we
substitute Weyl’s representation (16) for the Green’s function. To simplify the
appearance of |z� z0| in the Green’s function, we shall only consider the solutions in
z4b and z5a in the notation of figure 2. For z4b we have |z� z0|¼ z� z0, since the
value of the integration variable z0 is restricted to a5z05b, and similarly for z5a we
have |z� z0|¼�(z� z0). With equation (20) we have

kjj � ðr� r0Þ þ �jz� z0j ¼ K� � ðr� r0Þ, ð24Þ

where the upper (lower) sign refers to the region z4b (z5a). Then we define the two
source functions

DðkjjÞ� ¼
i

!

ð
d3rjðrÞe�iK��r, ð25Þ

in terms of which the magnetic field of the source can be represented as

BðrÞ ¼
i!�o

8�2

ð
d2kjj

1

�
eiK��rk� �DðkjjÞ�: ð26Þ

Here again the upper (lower) sign refers to the region z4b (z5a). This is
a superposition of plane waves, and each partial wave has a wavevector
K�¼Kk� �ez. The z-component is ��. Therefore, the solution in z4b travels
away from the source region towards larger z values for � real, and decays away from
the source in the positive z direction for � imaginary. Similarly, the solution in the

z=b

z=a

z=0

ez

r
ro

j(r) or j(x)

x

Figure 2. The source of the incident radiation is the current density j(r), which is located in
the region a5z5b. For a localized source around some point ro, it is advantageous to use the
position vector n to indicate a point in the source distribution.
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region z5a travels or decays towards the xy-plane. The solution with the lower sign

in equation (26) is the incident field on the mirror, so we have explicitly

BðrÞinc ¼
i!�o

8�2

ð
d2kjj

1

�
eiK��rK� �DðkjjÞ�: ð27Þ

6. Magnetic field in terms of the source function D(kk)�

Equation (27) expresses the incident field in terms of the source function D(kk)�,

whereas in equation (21) the reflected field is expressed in terms of the Fourier

transform ~BðkjjÞinc of the incident field in the xy-plane. We shall now derive a relation

between these two functions of kk. The incident field in the xy-plane follows from

setting z¼ 0 in equation (27), which gives

Bðr0Þinc ¼
i!�o

8�2

ð
d2kjj

1

�
eikjj�r

0

K� �DðkjjÞ� , xy� plane: ð28Þ

Then we multiply by expð�ik
0

jj � r
0Þ, as in equation (19), and we integrate over the

xy-plane. With the spectral representation of the two-dimensional delta functionð
dS0eiðkjj�k

0

jjÞ�r
0

¼ 4�2�ðkjj � k
0

jjÞ, ð29Þ

we obtain the simple relation

~BðkjjÞinc ¼
i!�o

2�
K� �DðkjjÞ�: ð30Þ

When we substitute this into equation (21) we find

BðrÞ ¼ BðrÞinc �
i!�o

8�2

ð
d2kjj

1

�2
eiKþ�rKþ � ez � K� �DðkjjÞ�

� �� �
, ð31Þ

for the magnetic field. The angular spectrum representation of B(r)inc is given by

equation (27), which holds for the region 05z5a. The second term on the right-

hand side of equation (31) is the reflected field, and this representation holds of

course for all z40.
Next we consider the field in z50, given by equation (22). From equation (30)

we have K� � ~BðkjjÞinc ¼ 0, and therefore the last term on the right-hand side of

equation (22) vanishes. When we combine equations (27) and (30) we have

BðrÞinc ¼
1

4�2

ð
d2kjje

iK��r ~BðkjjÞinc: ð32Þ

This shows that the incident field B(r)inc for all r in z5a is determined by knowledge

of this field in the xy-plane only, since the evaluation of ~BðkjjÞinc only involves

the field in the xy-plane. From equation (32) we see that the first integral on the

52 H. F. Arnoldus



right-hand side of equation (22) is just B(r)inc, and therefore the first two terms in
equation (22) cancel. This proves that B(r)¼ 0 for z50.

7. Verification of the boundary condition

Our solution (31) for the magnetic field in 05z5a was obtained by solving the
integral equation (8) for the current density, after which the field was expressed as
the sum of the incident field and the field radiated by i(r). In a more conventional
approach to reflection of radiation by an interface, like for the computation of the
Fresnel coefficients for a layer, one writes down general solutions of Maxwell’s
equations at both sides of the interface, containing some undetermined constants.
For the layer problem, these are the Fresnel coefficients. These constants are then
evaluated by imposing the boundary conditions for the electric and magnetic fields at
the interface. We now show that for our solution the boundary condition for the
magnetic field is satisfied.

The general boundary condition for B(r) is that its normal component must
be continuous across the boundary, which follows from Maxwell’s equation
r �B(r)¼ 0. For a perfect conductor we have B(r)¼ 0 inside the material, and
therefore it must hold that the normal component of B(r) is zero just outside
the medium, as also follows from equation (13). With rþ a point just outside
the material, we must therefore show that ez �B(rþ)¼0. Since the z-component of
rþ is zero in the limit where this point approaches the surface, we have
K� � rþ¼kk � rþ from equation (20). With this observation, equations (27) and (31)
can be combined as

BðrþÞ ¼
i!�o

8�2

ð
d2kjj

1

�2
eikjj�rþ �K� �DðkjjÞ� � Kþ � ez � K� �DðkjjÞ�

� �� �� 	
: ð33Þ

From equation (20) we derive

Kþ � ðez � aÞ ¼ ðK� � aÞez þ 2�ezðez � aÞ � �a, ð34Þ

for any vector a. For a¼K��D(kk)�, the first term on the right-hand side vanishes,
and we have

Kþ � fez � ½K� �DðkjjÞ��g ¼ 2�ezfez � ½K� �DðkjjÞ��g � �K� �DðkjjÞ�: ð35Þ

Taking the dot product with ez yields

ez � Kþ � fez � ½K� �DðkjjÞ��g
� 	

¼ �ez � ½K� �DðkjjÞ��, ð36Þ

and this gives ez �B(rþ)¼ 0, which is the boundary condition.
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8. Image source

In the method of images [24] the mirror is replaced by an image source in z50,
in such a way that the field radiated by the image source into the region z40 is the
same as the reflected field in the problem with the mirror. We now construct
the image of an arbitrary source, as in figure 2, and determine the corresponding
source function for the angular spectrum representation of the image field. Then
we prove that the field in z40 of the image source is equal to the reflected field B(r)r
by the mirror.

As usual in the method of images, we first guess what the image source is, and
then we prove afterwards that it is correct. Let r be a position vector of a point in the
source, and we write r¼ rkþ r?, where the subscripts k and ? refer to the parallel and
perpendicular components with respect to the xy-plane, respectively. The mirror
image of this point is

rim ¼ rjj � r?, ð37Þ

and the mirror image of a positive charge is a negative charge, as indicated in
figure 3(a). When this positive charge moves along the xy-plane, as in figure 3(b),
its mirror image moves in the same direction, but since this is a negative charge,
the corresponding current density is in the opposite direction. When the positive
charge moves away from the xy-plane, as in figure 3(c), its negative mirror image
moves in the negative z-direction, corresponding to a current density in the positive
z-direction. Therefore, if we write j(r)¼ j(r)?þ j(r)k for the current density at point r
in the source, then the current density at the mirror position rim is

jðrimÞ ¼ jðrÞ? � jðrÞjj: ð38Þ

(a) (b) (c)

+
r

r im

j(r)

j(r)

j(r im)

j(r im)

+ +

− − −

Figure 3. (a) The mirror image of a point with position vector r is the point with position
vector rim, and the mirror image of a positive charge is a negative charge, as is illustrated.
(b) When the positive charge moves parallel to the surface, its mirror image moves in the same
direction, but since this is a negative charge, the current density of the image source at the
image position is in the opposite direction. (c) When the positive charge moves away from
the surface, so does the mirror image. The corresponding current density of the image
source at the image position is therefore the same as the current density of the source.
These considerations lead to equation (38) for the current density of the image source.
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The angular spectrum representation of the field radiated by the image source is
identical in form as the field generated by j(r), with the explicit form given by

equation (26). The shape of the image source is the mirror image of the source,

since for every r in the source there is a corresponding rim in the image source.

Therefore the region a5z5b in figure 2 has a mirror image region �b5z5�a, and

for the field radiated by the image source in z40 we need the solution for z4�a,

which is the upper sign in equation (26). The source function for the image source is

DðkjjÞ
im
þ ¼

i

!

ð
d3rimjðrimÞe�iKþ�r

im

, ð39Þ

as in equation (25) (we will not need the – source function here), and the image field
in z4�a is

BðrÞim ¼
i!�o

8�2

ð
d2kjj

1

�
eiKþ�rKþ �DðkjjÞ

im
þ : ð40Þ

With equations (20) and (37) we have Kþ � rim¼K� � r, and for j(rim) we substitute the
right-hand side of equation (38) in the integrand of the integral in equation (39).

For d3rim we write d3r, since this is just a symbolic notation for the volume element.

Then equation (39) becomes

DðkjjÞ
im
þ ¼

i

!

ð
d3r½jðrÞ? � jðrÞjj�e

�iK��r, ð41Þ

and the integral now runs over the source, rather than over the image source.
Comparison with equation (25) then gives

DðkjjÞ
im
þ ¼ DðkjjÞ�,? �DðkjjÞ�,jj: ð42Þ

We find that theþ source function for the image source can be obtained from
the – source function of the source by reversing the sign of the parallel component.

With D(Kk)�¼D(kk)�,?þD(kk)�,k, and D(Kk)�,k¼�ez� [ez�D(kk)�], we can also

write equation (42) as

DðkjjÞ
im
þ ¼ DðkjjÞ� þ 2ez � ½ez �DðkjjÞ��: ð43Þ

The reflected field is given by the second term on the right-hand side of
equation (31), and with the identity (35) this can also be written as

BðrÞr ¼
i!�o

8�2

ð
d2kjj

1

�
eiKþ�r K� �DðkjjÞ� � 2ez ez � K� �DðkjjÞ�

� �� �� 	
: ð44Þ

For the field by the image source, equation (40), we need the cross-product of
DðkjjÞ

im
þ with Kþ. To this end we set a¼ ez�D(kk)� in equation (34). The second

term on the right-hand side vanishes and with a vector identity the result can be

written as

Kþ � fez � ½ez �DðkjjÞ��g ¼ �ez ez � K� �DðkjjÞ�
� �� �

� �ez �DðkjjÞ�: ð45Þ
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Furthermore we have from equation (20)

Kþ �DðkjjÞ� ¼ K� �DðkjjÞ� þ 2�ez �DðkjjÞ�: ð46Þ

Then we cross the representation (43) of DðkjjÞ
im
þ with Kþ and use equations (45)

and (46). This yields

Kþ �DðkjjÞ
im
þ ¼ K� �DðkjjÞ� � 2ez ez � K� �DðkjjÞ�

� �� �
, ð47Þ

and when we substitute the right-hand side in equation (40) for the field by the image
source, the result is exactly equation (44) for the reflected field. This shows that the
current density (38) and the source function (43) represent an image source that
radiates a field in z40 which is identical to the reflected field.

9. Localized source

The source functions D(kk)� from equation (25) depend on the origin of coordinates.
When a source is localized around some point ro, as in figure 2, then it is more
convenient to take this point as the origin of coordinates for the source functions. We
make the change of variables n¼ r� ro in equation (25), which gives

DðkjjÞ� ¼ e�iK��rodðkjjÞ�, ð48Þ

with the new source functions d(kk)� defined as

dðkjjÞ� ¼
i

!

ð
d3njðnÞe�iK��n: ð49Þ

The field emitted by the source, equation (26), then becomes

BðrÞ ¼
i!�o

8�2

ð
d2kjj

1

�
eiK��ðr�roÞK� � dðkjjÞ�: ð50Þ

The r dependence of the field enters through exp[iK� � (r� ro)], and it is now more
obvious that the field emanates from the neighbourhood of the point ro. The
reflected field is given by the second term on the right-hand side of equation (31), and
with K� � ro ¼ Kþ � rimo this becomes

BðrÞr ¼ �
i!�o

8�2

ð
d2kjj

1

�2
eiKþ�ðr�rimo ÞKþ � ez � K� � dðkjjÞ�

� �� �
: ð51Þ

The r dependence of the reflected field enters as exp½iKþ � ðr� rimo Þ�, and it appears
that this field is radiated by a localized source around the image position rimo .
Alternatively, the image source function from equation (43) is with equation (48) and
K� � ro ¼ Kþ � rimo :

DðkjjÞ
im
þ ¼ e�iKþ�r

im
o dðkjjÞ

im
þ , ð52Þ
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where

dðkjjÞ
im
þ ¼ dðkjjÞ� þ 2ez � ez � d kjj


 �
�

� �
: ð53Þ

With equation (40) we then have

BðrÞr ¼
i!�o

8�2

ð
d2kjj

1

�
eiKþ�ðr�rimo ÞKþ � d kjj


 �im
þ
, ð54Þ

and this is the alternative to representation (51). We now note that equations (50)
and (54) are identical in form. The source radiation emanates from the point ro and
has d(kk)� as it source function. The reflected radiation, when viewed as the image
source field, appears to come from rimo , and it has dðkjjÞ

im
þ as its source function.

10. Dipoles

When the source is an atom or molecule in an excited state, the emitted radiation
during spontaneous emission is usually electric dipole radiation. The time-dependent
electric dipole moment of the oscillating electron cloud has the form

peðtÞ ¼ Reðpee
�i!tÞ, ð55Þ

with pe the complex amplitude, which is referred to as the electric dipole moment.
When the atom or molecule is located at ro, the corresponding current density is

jðrÞ ¼ �i!pe�ðr� roÞ, ð56Þ

and with equation (49) we find for the source functions

dðkjjÞ� ¼ pe: ð57Þ

Apparently, for an electric dipole the þ and � source functions are the same. For
a point source, the region a5z5b in figure 2 becomes z¼ zo, so the angular
spectrum of the emitted dipole radiation is given by equation (50) with d(kk)�¼ pe,
and where the upper (lower) sign holds for z4zo (z5zo). The reflected field is given
by equation (51) with d(kk)�¼ pe. Alternatively, in the image approach the reflected
field is given by representation (54). For the image source function, the parallel
component changes sign, so we have

dðkjjÞ
im
þ ¼ pe,? � pe,jj � pime : ð58Þ

When compared to equation (57), we see that the image source is again an electric
dipole pime , but with its parallel component reversed in sign. This, of course, is a
well-known fact and also follows easily from considerations as in figure 3.
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Less trivial is the case of a magnetic dipole pm at ro. The time-dependent magnetic
dipole moment is given by equation (55) with pe! pm. The complex amplitude of the
current density is [25]

jðrÞ ¼ �pm �r�ðr� roÞ: ð59Þ

From equation (49) we obtain for the source functions

dðkjjÞ� ¼
1

!
pm � K�, ð60Þ

and here the þ and � source functions are different. In order to find the image
source we need to reverse the parallel part of d(kk)�. To this end we first write
pm¼ pm,?þ pm,k and use equation (20) for K�. This gives

dðkjjÞ� ¼
1

!
ðpm,? � kjj � �pm,jj � ez þ pm,jj � kjjÞ: ð61Þ

The first two terms on the right-hand side are parallel to the xy-plane and the third
term is perpendicular to the xy-plane. Therefore the image source function is

dðkjjÞ
im
þ ¼

1

!
ð�pm,? � kjj þ �pm,jj � ez þ pm,jj � kjjÞ, ð62Þ

which can also be written in a form similar to equation (60) as

dðkjjÞ
im
þ ¼

1

!
pimm � Kþ, ð63Þ

with

pimm ¼ pm,jj � pm,?, ð64Þ

for the image dipole moment. So the mirror image of a magnetic dipole is again a
magnetic dipole, but it has its perpendicular component reversed in sign, as
compared to the original dipole.

11. Electric quadrupole

An electric quadrupole has a current density [25]

jðrÞ ¼
i!

6
Q
$

� r�ðr� roÞ, ð65Þ

with Q
$

a symmetric Cartesian tensor. From equation (49) we find the source
functions to be

dðkjjÞ� ¼
�i

6
Q
$

� K�: ð66Þ
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We now want to find the image source function dðkjjÞ
im
þ , and express it in the form

dðkjjÞ
im
þ ¼

�i

6
Q
$ im

� Kþ: ð67Þ

Then equations (66) and (67) are identical in form, and we can consider Q
$ im

the
image of the electric quadrupole.

In order to obtain Q
$ im

we need to find the parallel and perpendicular
components of the right-hand side of equation (66). It will turn out to be convenient
to use spherical basis vectors e�, �¼�1, 0, 1, rather than Cartesian basis vectors.
This basis is defined as

e�1 ¼
1ffiffiffi
2

p ð�ex � ieyÞ, ð68Þ

and e0¼ ez. We then define a basis of unit tensors as [21]

E
$ðkÞ

q ¼
X
��0

ð1 � 1 �0jk qÞe�e�0 , ð69Þ

with (1 � 1 �0|k q) Clebsch–Gordan coefficients. These coefficients are only nonzero
for k¼ 0, 1 and 2, and for a given k the possible q values are �k, . . . , k. So for k¼ 0
we only have q¼ 0, and for k¼ 1 we have q¼�1, 0, 1 and for k¼ 2 there are five q
values. This gives nine independent tensors, just like there are nine independent
Cartesian tensors of the form e�e� with �,�¼x, y, or z. Then we expand Q

$

as

Q
$

¼
X
kq

QðkÞ
q E

$ðkÞ�

q : ð70Þ

The expansion coefficients QðkÞ
q are complex numbers, and for a symmetric Cartesian

tensor Q
$

the coefficients with k¼ 1 vanish. We then obtain the expression

dðkjjÞ� ¼
�i

6

X
�

e��

X
kq�0

QðkÞ
q ð1 � 1 �0jk qÞðe��0 � K�Þ, ð71Þ

for this source function, where we have used that the Clebsch–Gordan coefficients
are real. The terms with �¼�1 are in the xy-plane and the term with �¼ 0 is along
the z-axis. For the source function of the image source we therefore get a factor
(�1)� in equation (71), with everything else the same. Then we have

e��0 � K� ¼ ð�1Þ�
0þ1e��0 � Kþ, ð72Þ

which gives a factor of (�1)�þ�0þ1. The Clebsch–Gordan coefficients are only
nonzero for �þ �0 ¼ q, so we can replace this with (�1)qþ1. We then obtain

dðkjjÞ
im
þ ¼

�i

6

X
kq��0

ð�1Þqþ1QðkÞ
q ð1 � 1 �0jk qÞe��ðe

�
�0 � KþÞ, ð73Þ

Reflection off a mirror 59



which is with equation (69)

dðkjjÞ
im
þ ¼

�i

6

X
kq

ð�1Þqþ1QðkÞ
q ðE

$ðkÞ�

q � KþÞ: ð74Þ

Comparison with equation (67) then shows that the image quadrupole tensor is

Q
$ im

¼
X
kq

ð�1Þqþ1QðkÞ
q E

$ðkÞ�

q , ð75Þ

and comparison with equation (70) shows that the component QðkÞ
q picks up a factor

(�1)qþ1 upon reflection.

12. Angular distribution of the emitted power

When a small source is located near the surface, then the emitted radiation can be

observed by a detector in the far field. This radiation is the sum of the field emitted

by the source, represented by equation (26) with the upper sign, and the field of the

image source, given by equation (40). The field in the region z4b is

BðrÞ ¼
i!�o

8�2

ð
d2kjj

1

�
eiKþ�rKþ � D kjj


 �
þ
þD kjj


 �im
þ

h i
, ð76Þ

and the corresponding electric field follows from E(r)¼ (ic2/!)r�B(r), which is

EðrÞ ¼ �
i

8�2"o

ð
d2kjj

1

�
eiKþ�rKþ � Kþ � D kjj


 �
þ
þD kjj


 �im
þ

h in o
: ð77Þ

For a detector in the far field, located at field point r, we need to consider the
solution for r large. An asymptotic expansion of an angular spectrum can be made

with the method of stationary phase [26], and the result takes the general form

ð
d2kjj

1

�
eiKþ�rWðkjjÞ 	 �2�i

eikor

r
Wðkjj,oÞ, ð78Þ

whereW(kk) is any function of kk. At the right-hand side this function is evaluated at
the stationary point kk,o in the kk plane. With (r, �,�) the spherical coordinates of the
location r of the detector, this stationary point is

kjj,o ¼ ko sin �ðex cos�þ ey sin�Þ: ð79Þ

The value of Kþ in the stationary point is found to be kor̂, with r̂ the unit vector
in the observation direction. We obtain for the asymptotic approximation of
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the magnetic field

BðrÞ 	
!�oko
4�r

eikorr̂� D kjj,o

 �

þ
þD kjj,o


 �im
þ

h i
: ð80Þ

For the electric field a similar expression is found, and the result is related to the

magnetic field by

EðrÞ 	 �cr̂� BðrÞ: ð81Þ

The Poynting vector representing the energy flow in an electromagnetic field is in

general defined as

SðrÞ ¼
1

2�o
ReEðrÞ � BðrÞ�: ð82Þ

Here, E(r) and B(r) are the complex amplitudes of the electric and magnetic fields,

respectively, but S(r) is in the time domain. We have dropped terms which oscillate

with twice the optical frequency, which has the consequence that S(r) is independent

of time. With equation (81), a vector identity and r̂ � BðrÞ� ¼ 0 this becomes

SðrÞ ¼
c

2�o
½BðrÞ � BðrÞ��r̂: ð83Þ

We write an equal sign instead of 	, which we shall do from here on. The detected

power per unit solid angle into the direction r̂ is

dP

d�
¼ r2SðrÞ � r̂, ð84Þ

and with equations (80) and (83) this becomes

dP

d�
¼

!4

32�2"oc3
D kjj,o

 �

þ
þD kjj,o


 �im
þ

h i
� D kjj,o


 �
þ
þD kjj,o


 �im
þ

h i�D

� r̂ � D kjj,o

 �

þ
þD kjj,o


 �im
þ

h in o
r̂ � D kjj,o


 �
þ
þD kjj,o


 �im
þ

h i�n oE
: ð85Þ

The result (85) can be simplified further by using equations (48) and (52) for a

localized source. In the stationary point we have Kþ,o ¼ kor̂, so that

Dðkjj,oÞþ þDðkjj,oÞ
im
þ ¼ dðkjj,oÞþ þ e�iko r̂�ðr

im
o �roÞdðkjj,oÞ

im
þ

h i
e�iko r̂�ro : ð86Þ

Since this expression is multiplied by its complex conjugate in equation (85), the

phase factor expð�ikor̂ � roÞ cancels. Furthermore, with rimo � ro ¼ �2zoez, and with

h¼ kozo as the dimensionless distance between the source and the surface we have

�ikor̂ � ðr
im
o � roÞ ¼ 2ih cos �. We then introduce the function

Dð�,�Þ ¼ dðkjj,oÞþ þ e2ih cos �dðkjj,oÞ
im
þ , ð87Þ
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which depends on � and � through the dependence of the source functions on kk,o,
with kk,o given by equation (79). The first term on the right-hand side of equation
(87) comes from the radiation that is emitted by the source directly towards the
detector, and the second term represents radiation that is emitted towards the
surface, and then travels towards the detector after reflection. The factor
exp(2ih cos�) accounts for the retardation between the two signals, as is illustrated
in figure 4. The figure also shows that the reflected radiation appears to come from
the image source. The final result for the detected power per unit solid angle then
takes the elegant form

dP

d�
¼

!4

32�2"oc3
Dð�,�Þ �Dð�,�Þ� � r̂ �Dð�,�Þ

� �
r̂ �Dð�,�Þ�
� �� �

, ð88Þ

which holds for any localized source near the surface. The angle dependence enters
through the functions D(�,�), and through the angle dependence of the unit vector r̂.

Source

Image

de
r

zo x

q

q

q

xy -plane

Figure 4. The directly emitted (de) wave travels directly from the source to the detector,
and is observed under polar angle � with the normal to the surface. The reflected (r) wave is
also detected under angle �, and since the angle of incidence equals the angle of reflection,
the angle indicated by ? is equal to 2�. The wave emanating from the source as the incident
wave is incident on the surface at angle �, and therefore it leaves the source at angle � with the
normal. The normal distance between the source and the surface is zo, and the distance
travelled by the incident wave is indicated by x. We see from the figure that x¼ zo/cos�,
and the additional distance travelled by the r-wave, as compared to the de-wave, is xþ xcos2�,
which is equal to 2zocos�. This explains the phase factor exp[iko(2zocos�)] in equation (87)
for the reflected wave. Since the reflected wave makes an angle � with the normal to
the surface, it intersects the normal line through the source at an angle �. Therefore,
the reflected wave appears to come from the location of the image source, a distance zo
below the surface.
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For an electric dipole with dipole moment pe the functions d(kk)þ of the source
and dðkjjÞ

im
þ of the image are independent of kk, according to equations (57) and (58),

so we find immediately

Dð�,�Þ ¼ pe þ e2ih cos �pime : ð89Þ

For a magnetic dipole these functions do depend on kk, as follows from equations
(60) and (63). They depend on kk through Kþ, which becomes kor̂ in the stationary
point, and we find

Dð�,�Þ ¼ �
1

c
r̂� ðpm þ e2ih cos �pimm Þ: ð90Þ

Similarly, we obtain from equations (66) and (67)

Dð�,�Þ ¼ �
iko
6

r̂ � ðQ
$

þ e2ih cos �Q
$ im

Þ, ð91Þ

for an electric quadrupole. Equations (89)–(91) clearly show that the field by the
image source is accounted for by adding the image dipole moment (image
quadrupole tensor) to the dipole moment (quadrupole tensor). For the image term
the retardation factor exp(2ih cos�) appears, as a result of the fact that this radiation
first travels to the surface where it subsequently reflects, as illustrated in figure 4.
It is interesting to see that in this asymptotic limit the explicit dependence on the
location ro of the multipole drops out.

13. Power distribution of an electric quadrupole

As a nontrivial example we consider an electric quadrupole located near the surface.
Let the quadrupole tensor be given by

Q
$

¼ QE
$ð2Þ�

q , ð92Þ

with Q a complex number and q¼�2, . . . , 2. From equations (70) and (75) we find
that the image quadrupole moment is given by

Q
$ im

¼ Qð�1Þqþ1E
$ð2Þ�

q ¼ ð�1Þqþ1Q
$

: ð93Þ

The function D(�,�) becomes

Dð�,�Þ ¼ �
iko
6

r̂ �Q
$

½1þ ð�1Þqþ1e2ih cos ��, ð94Þ

and from equation (88) we find for the emitted power per unit solid angle

dP

d�
¼ jQj2

ck6o
1152�2"o

j1þ ð�1Þqþ1e2ih cos �j2 r̂ � E
$ð2Þ

q

� �
� r̂ � E

$ð2Þ�

q

� �
� jr̂ � E

$ð2Þ

q � r̂j2
� 


:

ð95Þ
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As an illustration, let q¼ 0. From equation (69) and the tabulated values of the
Clebsch–Gordan coefficients we find explicitly

E
$ð2Þ

0 ¼
1ffiffiffi
6

p ðe1e�1 þ 2e0e0 þ e�1e1Þ, ð96Þ

in spherical unit vectors, and with equation (68) this becomes

E
$ð2Þ

0 ¼
1ffiffiffi
6

p ð2ezez � 2exex � eyeyÞ, ð97Þ

in Cartesian unit vectors. We furthermore have r̂ ¼ sin �ðex cos�þ ey sin�Þ þ ez cos �,
which gives

r̂ � E
$ð2Þ

0

� �
� r̂ � E

$ð2Þ�

0

� �
� jr̂ � E

$ð2Þ

0 � r̂j2 ¼
3

8
ðsin 2�Þ2, ð98Þ

and this yields for the angular distribution of the emitted power

dP

d�
¼ jQj2

ck6o
1536�2"o

½1� cosð2h cos �Þ�ðsin 2�Þ2: ð99Þ

This intensity pattern is shown in figure 5, together with the angular distribution of
the radiation for this quadrupole in free space. The lobe structure is a result of
interference between the radiation emitted directly by the source towards the detector
and the radiation that is first reflected off the mirror.

14. Conclusions

When electromagnetic radiation is incident upon a perfectly-conducting medium,
a current density is induced on the surface of the material. This surface current
density i(r) is the solution of the integral equation (8), which has the incident
magnetic field as inhomogeneous term. We have shown that for a flat surface of
infinite extent the solution of this equation can be obtained in closed form, and is
given by equation (11). This remarkably simple expression shows that the current
density at the point r of the surface is determined by the value of the incident
magnetic field at that same point. With the current density known, the total magnetic
field is the sum of the incident field and the field generated by i(r), and the result is
given by equation (15), involving the Green’s function for the scalar free-
space Helmholtz equation. The total magnetic field is determined entirely by the
value of the incident magnetic field at the surface of the conductor, irrespective
the source of the radiation. With Weyl’s representation (16) of the Green’s function,
the magnetic field in z40 can also be written as an angular spectrum, as given by
equation (21). The angular spectrum representation of the field in z50 is given
by equation (22), and it was shown that this field vanishes. The current density
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generates a magnetic field, and inside the material this field cancels exactly the

incident field.
When the incident field is radiation from a source with known current density

j(r), the reflected field can be expressed in terms of a source function D(kk)�, defined

by equation (25), and the result is given by the second term on the right-hand side of

equation (31). In section 8 we constructed an image source, and equation (42) or (43)

shows that the source function of the image source can be obtained in a simple

way from the source function of the source itself. It was shown explicitly that the

image source radiates an electromagnetic field in z40 which is identical to

the reflected field.
When the source is localized around some point ro it is advantageous, but not

necessary, to make the change of coordinates shown in figure 2. The dependence on

the location ro of the source then factors out as in equation (48), leading to the new

source functions d(kk)�. We illustrated in sections 10 and 11 that the approach with

the source functions leads to a simple method for obtaining the mirror image of

multipoles with, for example, the mirror image of an electric quadrupole given by

equation (75). For a localized source, the power emitted per unit solid angle,

including the directly emitted radiation by the source and the reflected field, was

found to be given by equation (88). This expression holds for any source of radiation

near the surface, and its evaluation only involves the source functions d(kk)�.
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Figure 5. The thin line is a polar diagram of the angular intensity distribution of the
radiation emitted by a q¼ 0 electric quadrupole near the surface of a perfect conductor, and
the thick line is the emission pattern for the same quadrupole in free space. The radiation
pattern is rotation symmetric around the normal to the surface. The dimensionless normal
distance between the quadrupole and the surface is h¼ 6�, and both curves are scaled with the
same overall constant.
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