Available online at www.sciencedirect.com

ScienceDirect

SURFACE SCIENCE

ELSEVIER Surface Science 601 (2007) 450-459

www.elsevier.com/locate/susc

Surface currents on a perfect conductor, induced by a magnetic dipole

Henk F. Arnoldus *

Department of Physics and Astronomy, Mississippi State University, P.O. Drawer 5167, Mississippi State, MS 39762-5167, USA

Received 21 March 2006; accepted for publication 3 May 2006
Available online 30 October 2006

Abstract

An oscillating magnetic dipole located near a perfect conductor induces a current density on the surface of the metal. We have derived
an expression for this current density, and studied its field line patterns for various orientations of the dipole moment. When the dipole
moment is perpendicular to the surface, the field lines are circles which run clockwise and counterclockwise. For a linear dipole oriented
parallel to the surface, the field line pattern is much more complex, and it contains singular points. When the dipole moment rotates in a
plane parallel to the surface, the field lines are spirals. A field line spirals inward from infinity to some given point, after which it spirals
outward back to infinity. We have also considered the Poynting vector of the electromagnetic field near the surface, and we found that its

field lines can have singular points or exhibit a vortex.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Singularities in an electromagnetic radiation field may
occur as phase discontinuities in traveling waves [1], but
the most intriguing singular phenomenon in radiation is
the optical vortex. In such a vortex the field lines of the
Poynting vector, indicating the direction of energy flow,
swirl around a line. For a point on this line the direction
of the Poynting vector is usually undetermined, which
makes the line a singular line. The first prediction of the
appearance of a vortex seems to have been made by Braun-
bek and Laukien [2], who showed that when a half-infinite
screen is illuminated by a plane wave a vortex line appears.
This line runs parallel to the screen, and is located near the
edge at the illuminated side. Such a vortex is the result of
diffraction, and similar vortices appear for instance in dif-
fraction through a narrow slit [3,4]. A particular interesting
example is the occurrence of vortices in Laguerre-Gaussian
laser beams [5-8], where the appearance of the vortices re-
flects the angular momentum carried by the beam [9,10].
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Vortices of a different nature occur when the rotation in
the field lines of the Poynting vector has its origin in the
source emitting the radiation, rather than being a result
of diffraction or interference. When a small source, like
an atom, emits a pure electric or magnetic multipole field
of order (¢,m), with m # 0, the radiation exhibits a vortex
[11], and the appearance of the vortex is a reflection of the
angular momentum carried by the light [12]. Fig. 1 shows
two field lines for a dipole (¢ = 1) with m = 1. The extend
of the vortex is less than a wavelength. The field lines spiral
around the z-axis near the origin, and at larger distances
they run approximately radially outward. We shall con-
sider the situation where an oscillating magnetic dipole is
located near the surface of a perfectly conducting metal.
Such a magnetic dipole can be realized, for instance, by
crossing an atomic beam with a laser beam near the sur-
face. The laser frequency is tuned to an electric-dipole-
forbidden, but magnetic-dipole-allowed atomic transition,
and the laser polarization is chosen such as to excite a par-
ticular mode of oscillation of the dipole (for instance, circu-
lar around the normal to the surface). The resonance
fluorescence emitted by an atom of the beam is then mag-
netic dipole radiation as considered here, provided that line
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Fig. 1. Shown in this figure are two field lines of the Poynting vector of
the radiation field emitted by a dipole with m =1, located at the origin
of coordinates. For m =1 dipole radiation, the light carries angular
momentum, and the energy flow exhibits the vortex structure shown. We
use dimensionless coordinates x = kox, etc., with ky the wave number.
Then Ax = 2r corresponds to one wavelength. We see from the figure that
the extend of the vortex around the origin is well below a wavelength.

broadening due to spontaneous emission is ignored. The
radiation field of such a dipole will induce a surface current
in the material, and it can be anticipated that the current
density has an intricate field line pattern, in particular when
the radiation field itself contains a vortex as in Fig. 1. The
corresponding case for an electric dipole was considered in
Ref. [12], where it was shown that for m = 1 the field lines
of the current density in the xy-plane lie inside an infinite
spiral. It turns out that for a magnetic dipole the result is
far more complex.

2. Field of a magnetic dipole near a perfect conductor

A magnetic dipole has a dipole moment p(¢), and we
shall assume a harmonic time dependence

p(1) = Re(pe™), Q)

with p a constant, in general complex-valued, vector and w
the angular frequency. The emitted electric field E(r, ) then
has the same time dependence, e.g.,

E(r,t) = Re[E(r)e ], (2)

with E(r) the complex amplitude, and similarly the mag-
netic field B(r,?) has complex amplitude B(r). For a mag-
netic dipole located at the origin of coordinates these
fields are [13]

3 N\ aig
E(r)= K pxi*(l—i—i)%, (3)
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(=" 1P~ P-)i+lp-3(p )]q )T (4)
with ko= w/c the wave number, # the radial unit vector,
and g = kor the dimensionless radial distance between the
field point r and the dipole.

The surface of the perfect conductor will be taken as the
xy-plane, and we consider the dipole located on the z-axis,
a distance H above the surface. The total field in the region
z>0 is then the emitted field given by Egs. (3) and (4),
shifted up over a distance H, and the field of the image di-
pole p™. The image dipole is positioned on the z-axis, a dis-
tance H below the surface. If we write p = p| + p, for the
dipole moment, with the subscripts referring to the orienta-
tion with respect to the surface, then the image dipole mo-
ment is given by [14] p™ =p| —p, . Its field is again given
by Egs. (3) and (4), with p replaced by p"™, and shifted
down over a distance H.

3. Surface current density

The fields of the magnetic dipole and its mirror image
induce a surface current density i(r,z) in the xy-plane.
The complex amplitude #(r) follows in the usual way from
a boundary condition for the magnetic field:

i(r) = —e. X B(r), (5)

1
Ho
with B(r) the magnetic field just above the xy-plane. In or-
der to evaluate B(r) in the xy-plane we consider the setup
shown in Fig. 2. The field point r is in the xy-plane, and
vectors ry and r, represent this point with respect to the di-
pole and the image dipole, respectively. The variable ¢ in
Egs. (3) and (4) is the dimensionless distance between the
source and the field point, which is now ¢, = k¢r; for the
dipole, and since the field point is in the xy-plane, this dis-
tance is the same for the image dipole. We shall use again
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Fig. 2. The magnetic dipole p is located on the z-axis, a distance H above
the xy-plane. Its mirror image p™ is a distance H below the xy-plane, and
it has its perpendicular component reversed, as compared to p. A point in
the xy-plane is represented by the position vector r with respect to the
origin of coordinates, and by r; and r, with respect to the dipole and its
mirror image, respectively.
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q = kor for the distance between the field point and the ori-
gin of coordinates. When we set & = koH for the dimen-
sionless distance between the dipole and the surface, we
have

a =\a@+h, (6)

as follows from the figure. The unit vector # in Egs. (3) and
(4) has to be replaced by r; for the dipole and by #, for the
image dipole. We shall indicate by e, the radial unit vector
in the xy-plane, so that r = re,. It then follows from the
figure that

. 1

i =—(qe, — he.), (7)
qi
1

i = — (e, + he,). (8)
q

Putting everything together then yields for the magnetic
field in the xy-plane

B toky i1
s =5l (03

3i 3\ e
Lo -mwoa(1+2-3)|T o
with p, =p-e.. We notice that B(r) is in the xy-plane,
as is required by the boundary conditions for a perfect
conductor.
The complex amplitude of the current density, i(r), then
follows from Eq. (5), after which the time-dependent
current density is

i(r,7) = Refi(r)e ). (10)

The dipole moment can be written as

P=pe"e, (11)
with po > 0,  a real-valued phase factor, and ¢ a unit vec-
tor, which in general will be complex valued. Then we set

kgpo
) = —— 12
] o ) ( )
and introduce the time parameter
o=wt—1y, (13)

which then finally yields for the current density

. i1 q
i(r,t) =igReq |e. X & 1+——>—q8~e — he
(r8) =do H ( o @) g

3 3 i(q) o)
xe¢(1+—l——2>]e } (14)
9 4 Ual

with ey = e. X e,

4. Dipole moment along the z-axis

Let us first consider the case where the magnetic dipole
moment p is real and oriented along the z-axis. Then we
have gy =0, ¢, =1, and Eq. (14) simplifies to

) iohg K 3) 3 .

i(r,t) =—e 1 ——)cos(q; —a) ——sin(q; — a)|.

(r,2) 7 p (g1 — ) @ (g1 — o)
(15)

For a given time ¢, or a given o, the current density is in the
e, direction, and its magnitude only depends on ¢ (and
parametrically on /). The field lines of i(r,?) are circles
around the origin, as illustrated in Fig. 3. Since i(r, f) is pro-
portional to ¢, we have i(r,1) = 0 at the origin of coordi-
nates. At r =0 the direction i(r,#) is undetermined, and
therefore r = 0 is a singular point in the field line pattern.
Furthermore, the factor in square brackets in Eq. (15) is
zero when ¢ is a solution of
9 1

tan(q, — ) 3 g (16)
Each solution ¢ determines a circle in the xy-plane. If we
cross such a circle, then the factor in square brackets in
Eq. (15) changes sign, and so the current density reverses
direction. We call these circles the singular circles, because
on these circles the direction of i(r, ¢) is undetermined.

Fig. 3 shows the field line pattern of i(r, ) for a given in-
stant £. When time progresses, the field line picture changes.
Since the time dependence of i(r,f) only enters as ex-
p(—imt), any field line pattern repeats itself after a time
At =2n/w. If we consider a fixed point r, then i(r, ) oscil-
lates back and forth with angular frequency , while
remaining tangent to a circle at all times. In order to see
how the pattern of Fig. 3 evolves in time, we consider the
singular circles. The (dimensionless) radius ¢ of such a cir-
cle is a solution of the transcendental Eq. (16), and depends
on time through the parameter «. By differentiating
Eq. (16) with respect to o we derive

y

Fig. 3. Field line pattern of the current density #(r, 7) for a dipole moment
along the z-axis. The thin lines are the singular circles on which the current
density vanishes. Across such a circle #(r,f) changes direction, so the
current densities are counter rotating in two regions separated by a
singular circle. The radii of all circles increase with time, and the circles are
about half a wavelength apart.
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dg ®oo3 ( 3)
— =1+ =5+—(1+5), 17
de "¢ qq qi (17)

which is positive for any solution ¢g. Therefore, the radii ¢
of the singular circles increase with «, or ¢. This means that
all circles in Fig. 3 expand with time, and new circles are
continuously being produced at the origin. In terms of r
and ¢ we have

dr  dq
dt~ “dw’
which is the speed, or rate of expansion, of a singular circle.
Since the right-hand side of Eq. (17) is larger than unity, we
see that the rate of expansion of the singular circles is larger
than the speed of light. For ¢ large, the rate dr/dz ap-
proaches the speed of light c.

(18)

5. Dipole moment parallel to the surface

As a second case we consider a real dipole moment, ori-
ented parallel to the xy-plane, say along the x-axis. Then
we have g =e,, ¢, =0, and the current density from
Eq. (14) becomes

i(r,t) = ;—01 {e:b(q) sin ¢ cos ¢

+¢,[a(q) — b(g) cos” ¢]}. (19)
Here we have introduced the abbreviations
1 1 .
a(q) = <1 - 2> cos(q; — o) — — sin(q, — o), (20)
91 q1
2
q 3 ) 3 .
b(g) == |(1——]cos(qg; —a) ——sin(g, —a)]. 21
@=L (1-2) eostar ) - 2 sinfay - 2| 21)

These functions only depend on the coordinate g of the
field point (not on ¢), and they depend parametrically on
h and o. In terms of the unit vectors e, and e, the current
density is

i(r,1) = ;—Ol{epa(fJ) sin ¢ + egfa(q) = b(q)]cos ¢} (22)

In order to analyze the field line pattern of the current den-
sity, we first determine the locations of the singularities,
e.g., the points in the xy-plane where #(r,f) vanishes.
For a point on the y-axis we have ¢ = +n/2, and with
Eq. (19) this gives

i(r, 1) = ;—Ola(q)ey (y-axis), (23)

with ¢ = y. If we set a(g) = 0, then this is an equation for ¢,
and each solution g can be considered to define a circle in
the xy-plane. The points where these circles intersect the y-
axis are the singular points on the y-axis. Fig. 4 shows a(q)
as a function of ¢ for # =1 and o = 0. In general, the origin
of coordinates, ¢ =0, will not be a singular point. For ¢
large we have a(q) ~ cos(q — o), and therefore the roots
of a(g) are approximately 2n apart. On the y-axis, #(r,?) is

1 -
a(q)

a(q)—b(q)
05}

05

qL

Fig. 4. The figure shows the graphs of the functions a(g) (thick line) and
a(q) — b(g) (thin line) for # =1 and o = 0. The zeros of a(q) determine the
singular points on the y-axis, and from the data we obtain the solutions
q=4.37,7.66, 10.86, 14.03, ... The roots of a(q) — b(q) give the singular
points on the x-axis, and we find ¢ = 0.56, 2.37, 5.59, 9.21, 1241, ...

in the y-direction. When moving along the y-axis, the cur-
rent density changes direction when we pass a singular
point, since a(g) changes sign. For a point on the x-axis
we have ¢ =0 or w, and with Eq. (19) this gives

i(r.1) = 2 alg) ~ blg)e, (v-axis). (24)

So, on the x-axis the current density is also in the y-direc-
tion, except at the singular points where a(q) — b(¢q) = 0.
Fig. 4 shows a(gq) — b(q) as a function of ¢, and the roots
of this function represent circles in the xy-plane. The points
where these circles intersect the x-axis are the singular
points on the x-axis. When moving along the x-axis,
i(r,t) changes direction when we cross a singular point.
For ¢ large we have a(q) — b(q) =~ (2/q)sin(q — o), as can
be shown from Egs. (20) and (21), and the roots are
approximately 2m apart. Let us now consider a point
(g, @) off the coordinate axes. For i(r,?) to be zero, it fol-
lows from Eq. (22) that a(g) = 0 and b(¢) = 0 have to hold
simultaneously. It is easy to verify from Egs. (20) and (21)
that this is impossible. Therefore, all singular points are
located on the coordinate axes.

On the y-axis, the current density is given by Eq. (23),
and we see that i(r,7) is along the y-axis. Therefore the
y-axis is a field line, except for the singular points across
which the current density changes direction. The direc-
tion of the field line is determined by the sign of a(g).
For a point on a circle defined by a(g) =0 we have from
Eq. (22)

ir0) = -2 ¢ b(g)cosd  (a=0), (25)

q
which is tangent to the circle. Therefore, these circles are
field lines, except for the singular points on the y-axis. It
follows from Eq. (22) that across such a circle the e, com-

ponent of i(r, #) changes sign, so the current density changes
from flowing inward to flowing outward, or vice versa. The
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direction of the current density on the circle follows from
Eq. (25). On a circle a(q) — b(q) = 0 we have

i(r, ) = ;—Ole,,a(q) sing, (a—b=D0), (26)

for which the current density is in the radial direction.
Therefore, these circles are not field lines. We see from
Eq. (22) that across such a circle the ey component of
i(r,t) changes sign. The direction of i(r,?) for a point on
the x-axis is determined by the sign of a(q) — b(g), accord-
ing to Eq. (24), and i(r, ) changes direction across a circle
a(q) — b(q) = 0. Fig. 5 illustrates the considerations so far.
Through every point, except a singular point, goes a
field line, indicating the direction of the current flow at that
point. This implies in particular that field lines can not
cross. Let us now consider the point marked with @ in
Fig. 5. This point is surrounded by two semi-circular field
lines and by two field line segments on the y-axis. There-
fore, if we would follow the field line through @, there is
no way out of this area. In order to find out the remaining
part of the field line picture, we resort to numerical integra-
tion. Let a field line be parametrized as r = r(u), with u a
dummy variable. Then at r on the curve, the current density
i(r,t) is on the tangent line, and points into the direction of
increasing u. Therefore, the field lines are solutions of the
differential equation
& i), 27)

with f{r) an arbitrary positive function of r. We shall use
the representation of Eq. (19) for #(r, t), and use dimension-

Fig. 5. The thick circles have a radius equal to the solution of a(g) =0,
and for this figure we have taken the numerical data from Fig. 4. Their
intersections with the y-axis are singular points of the flow field, and these
are indicated by small circles. The dashed circles have a radius equal to the
solution of a(q) — b(q) =0, and their intersections with the X-axis are
singular points. The thick circles and the y-axis are field lines, interrupted
by singular points. The arrow heads indicate the directions of the various
parts of the field lines. The arrows on the X-axis indicate the direction of
i(r,?) in that neighborhood. This direction reverses when crossing a dashed
circle.

less coordinates X = kox, ¥ = kogy. We take f(r) = q1/(koio),
and substitute cos ¢ = x/q, sin ¢ = y/q, which then gives
the set of equations

dx Xy
du b(Q);y (28)
= ala) - bl) %5, (29)

with ¢ = (¥* + )72)%. For given initial values (X, o), corre-
sponding to for instance the coordinates of the point @
in Fig. 5, this set determines the coordinates (¥,y) of the
points on the field line through (xy,,) as a function of u.
When the initial point is taken as in Fig. 5, we have to inte-
grate forward and backward in u in order to obtain the
entire field line.

The field line pattern for i(r,?) for the case of a dipole
oscillating along the x-axis is shown in Fig. 6. We notice
from Eq. (19) that #(r,t) is symmetric for reflection in the
y-axis (for ¢ — n — ¢ the i, changes sign and the i, remains
unaltered), so we only show the result for x > 0. It appears
that most field lines start at a singular point on the y-axis.
They follow a circle a(q) =0 for a while, and then turn
either left or right. After that they catch up with an adja-
cent a(q) = 0 circle, and then they end at another singular
point on the y-axis. The only exception to this behavior
is seen near the origin where some field lines form closed
loops, rather than running from one singular point to
another. These closed loops circle around the singular
point on the X-axis, given by the smallest solution of
a(q) — b(q) =0, e.g., the first zero of the thin curve in
Fig. 4. A singular point on the y-axis resembles a source
or a sink in the sense that all field lines come out of this
point or end up in this point (this is more clear in
Fig. 5). We notice from Fig. 6 that the singular points on
the x-axis are of a different nature. For a given point, field
lines flow to it and away from it, and in such a way that
they appear to be repelled by the singular point.

6. Rotating dipole moment

A different type of field line pattern appears when we
take vector ¢ in Eq. (11) as a spherical unit vector:

1 .
g=— 7 (ey +1e)). (30)

Then the dipole moment p(¢) from Eq. (1) is a vector of
constant length, which rotates counterclockwise in the
xy-plane. The current density follows from Eq. (14):

i(r,1) = Re({ie,d(q) + es[B(q) — A(q)]}e"), (31)

o
QI\/§

where we have set
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Fig. 6. The figure shows the field line pattern of i(r, ) for a magnetic dipole oscillating along the x-axis, for a fixed value of time ¢, and for A =1, « = 0.
The thick and dashed circles are the same as in Fig. 5, but on a different scale. The smallest dashed circle and the corresponding singular point on the x-axis

are not shown. The pattern is symmetric for reflection in the y-axis.

—
A<q>=(1+qil—?)e'<w>, (32)
1
2 .
q 3i 3\ .,
Blg :—<1+———>e‘(‘“ %) 33
(@) q a4 #3)

The a(q) and b(g) from the previous section are the real
parts of these A(g) and B(q), respectively. For a point on
a field line we use the dimensionless Cartesian coordinates
(x,¥), which are functions of u. From Eq. (31) we then
derive the equations for the field lines

= Relid(q) - @) 5 -+ ). (34)
D~ Re|-le) + Bo) S (i) (33)

which have to be solved given an initial point (X, o).
Each initial point (Xo,,) determines a field line. When
we take a large number of initial points, compute the field
lines that go through these points, and then draw them all
in one figure, we obtain the field line pattern shown in
Fig. 7. If we now look at the point indicated by @ in the
second quadrant, it seems that one field line comes in
and three go out, which would be characteristic of a singu-
lar point. However, i(r,) form Eq. (31) has no singular
points. In Fig. 8 we show the field line which goes through
the initial point (3,2), indicated by @. We see that the field
line spirals in, and when it gets close to the initial point, it
turns around, after which it spirals back out. The outgoing

y

12
| i i
0 A

-12 : :
12 6 0 6 12

=|

Fig. 7. This figure illustrates the field line pattern of the current density in
the surface of the conductor induced by a counterclockwise rotating
magnetic dipole on the z-axis, for 1 =1, « =0. The spiral of Fig. 9 is
copied into this figure as the thin curve, and we notice that it is only visible
near the origin. All field lines approximately come in over this spiral and
leave following this spiral, so away from the origin, this spiral is covered
with field lines. The point indicated as @ in the second quadrant has the
appearance of a singular point, but it is not.

spiral lies in between the ingoing spiral. Each field line in
Fig. 7 has a similar appearance as the field line in Fig. 8.
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Fig. 8. This figure shows a field line of i(r,7) for the case of a rotating
dipole moment. The point @ is the initial point, which is (3,2), and the
parameters are « =0 and A= 1.

In order to understand the spiraling of the field line, as
shown in Fig. 8, we work out expression Eq. (31) more
explicitly. This yields

2
i(r,?) es|sin(g, +0+¢—o
- 2 )e, sinta )
——=le,si +p—a)— K —a)], (36
+ 7 ﬁ[ep sin(g, + ¢ —a) —h'eycos(q, +p—a)],  (36)
where we have set
o = arctan(1/q,). (37)

We now consider the current density at field points not too
close to the origin, so that we can consider ¢ as relatively
large. When we neglect terms that drop off faster than
1/q, Eq. (36) simplifies to

i(rt) ~ e,sin(q, +0+ ¢ —a). (38)

lf
Since #(r, 1) is (approximately) proportional to e,, it is in the
radial direction, either inward or outward depending on
the sign of sin(g; + 0 + ¢ — o). But sin(q; + 0+ ¢ — o) is
a function of the coordinates (g, ¢), so if we follow a field
line in the radial direction we will eventually approach a
point where sin(g; +0 + ¢ — o) is equal to zero. If we
would pass such a point by going in the radial direction,
the current density would abruptly go from radially out-
ward to radially inward, or vice versa, which would only
be allowed when such a point would be a singular point,
which it is not. When we approach a point where
sin(q; + 0 + ¢ — a) is equal to zero, the approximation of
Eq. (38) is not valid anymore. The right-hand side goes
to zero, and therefore it is not the leading term anymore

for the general expression given by Eq. (36). When
sin(q; + 0 + ¢ — o) =0, the first term of the right-hand
side of Eq. (36) vanishes, and the leading term now
becomes

i(r,t) ~ \/—% cos(q; + ¢ — o). (39)

Here we have also used that 6 — 0 for ¢ sufficiently
large, so that sin(g; + ¢ — a)~ 0. We then also have
cos(q; + ¢ — o) =~ +1. Now we see from Eq. (39) that when
a field point is in the neighborhood of a point where
sin(q; + 0 + ¢ — a) is equal to zero, the current density is
in the ey direction, either clockwise or counterclockwise.
The field line now becomes spiraling with the origin as
center, as in Fig. 8. Let us now consider the solution of

sin(q; +0+ ¢ —a) =0. (40)

This equation determines curves in the xy-plane, and when
we see ¢ as the variable, the solution for ¢(g) is

#(q) = —q

Here, the right-hand side is a function of ¢, with « and £
fixed parameters, and »n is an integer. The corresponding
dimensionless Cartesian coordinates for points on the
curves are

X =qcos ¢(q), (42)
y=gsin¢(q). (43)

Each value of n then determines a curve, but we only need
to consider =0 and n =1, since any other value of n
reproduces one of these two curves. From Egs. (42) and
(43) we notice that for ¢ = 0 we have x = y = 0, and there-
fore both curves connect at the origin. When we differenti-
ate Eq. (41) with respect to ¢, using Egs. (6) and (37), we
obtain

do _ qq
dg 1+¢3’

—0+a+nm, 0<g<oco. (41)

(44)

which is negative. Therefore, ¢ decreases with increasing ¢,
which gives the curves a spiraling behavior. For ¢ suffi-
ciently large we have d¢/dg ~ —1, and therefore ¢ increases
by about 2m when ¢ decreases by 2=, e.g., after one rota-
tion of the spiral. For ¢(g) given by Eq. (41) we have
cos(qy + ¢ — o) = cos(nm), when we consider 6 = 0. Conse-
quently, cos(q; + ¢ — o) = 1 for the n = 0 curve, and from
Eq. (39) we then observe that i(r, ) near this curve is in the
negative e, direction, so the field line rotates clockwise.
Similarly, near the n =1 curve the current density is in
the counterclockwise direction. We now assign the same
orientations to the two curves. The n =0 curve is defined
to run clockwise and the n =1 curve goes counterclock-
wise. On the counterclockwise curve, ¢ increases along
the curve and therefore ¢ decreases, so this curve spirals in-
ward from infinity to the origin. In the same way, the n =0
curve spirals outward from the origin. This outgoing curve
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Fig. 9. This figure shows the spiral defined by Eq. (41) with n =0 and
n=1, for h=1, o = 0. The direction is chosen such that the field lines of
the current density follow this spiral, both coming in and going out. The
n =1 branch is the incoming part, which rotates counterclockwise and the
n =0 branch is the outgoing part which rotates clockwise. Both branches
connect smoothly at the origin, where the incoming spiral goes over in the
outgoing spiral. The field lines of the current density shown in Fig. 7 come
in over this spiral, turn around somewhere near a chosen point, and they
leave again over the outgoing branch of this spiral.

spirals outward in between the incoming spiral. This is
illustrated in Fig. 9.

When we select an initial point (X, o), like the point @
in Fig. §, the field line through this point will typically run
in the radial direction, according to Eq. (38). When we fol-
low the field line over a distance of at most m, it will ap-
proach a point on the spiral, and there it will turn in the
e direction. Then it will follow the spiral from there on.
When we look at the initial point @ in Fig. 8 we see that
the field line comes in over the counterclockwise spiral, un-
til it gets close to chosen point (X, o), where it turns into
the radial direction. After passing through the initial point,
it meets up with the spiral again, after which the field line
runs outward over the clockwise part of the spiral. There-
fore, all field lines come in over the same spiral, go through
a chosen point, and leave again following the clockwise
part of this spiral. This gives the field line picture of
Fig. 7 for a rotating dipole moment above the xy-plane.

7. Poynting vector at the surface

Fig. 1 shows two field lines of the Poynting vector for an
m =1 dipole in free space. An m = 1 dipole has a rotating
dipole moment, as considered in the previous section.
When this dipole is located on the z-axis, a distance H
above the conducting xy-plane, it induces the current den-
sity pattern shown in Fig. 7. We now consider the Poynting
vector and its field lines near the surface, so just above the

induced current. The Poynting vector for time-harmonic
fields, indicating the direction of energy flow, is in general

S(r) = LReE(r) x B(r)". (45)
2,

Here, oscillations with twice the optical frequency have
been dropped, since they average out to zero on a time
scale of an optical cycle. This makes S(r) independent of
time. The complex amplitude of the electric field near the
surface can be found by considering the field of the dipole
and its mirror image, just as in Section 3, with result

K} i e
E(r)=—Lp x e‘,(l +—) < (46)
1 41/ 4
The field is perpendicular to the surface, as required by the
boundary conditions near a perfect conductor. With B(r)
given by Eq. (9) we obtain for the Poynting vector

_ b o4 AW
S(r) = T q—?Re (g - ep) _q_f g xe
q 2i 31’) . . ]}
+=5(1———= g e, —he e , 47
q?( a4 (q e L) ’ 47

where we have used Eq. (11) for p. Vector S(r) is in the xy-
plane for all r, indicating that no energy flows into the
material.

In Eq. (46) the dipole moment only enters as p;. If the
dipole moment is oriented along the z-axis, as considered
in Section 4, we have p; =0, and therefore E(r)=0 in
the xy-plane, which then gives S(r) = 0. Apparently, for
the current density field line pattern shown in Fig. 3, the
corresponding Poynting vector is zero. The complex ampli-
tude o(r) of the surface charge density follows from the
electric field near the surface according to

a(r) = ge. - E(r), (48)

just like i(r) followed from B(r) with Eq. (5). This implies
that for the case of a dipole moment along the z-axis the
induced surface charge density is zero. From conservation
of charge we have V - i(r) = iwo(r), and it should therefore
hold that the field line pattern in Fig. 3 has a zero diver-
gence. That this is indeed the case can be seen from Eq.
(15). The current density only has an es component, and
this component is independent of ¢. Any such vector field
in a plane has a zero divergence.

8. Dipole moment along the x-axis

We now consider a dipole moment p along the x-axis, as
in Section 5. When we set g = e,, ¢, =0 in Eq. (47) and
express the result in Cartesian coordinates we obtain

_ lé .)7 —— -2 h2 49

r —mq—?[xyewﬂy +h)ey). (49)
We first notice that S(r) =0 for y =0, and therefore
the x-axis is a singular line. Second, when we replace X by
—x and leaving y the same, then the X-component of
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S(r) changes sign, whereas the y-component remains the
same. Therefore the field line pattern of S(r) is symmetric
under reflection in the y-axis, so here we only consider
X > 0. Third, when we set x = 0 we get S(r) x ye,, so for
a point on the y-axis the Poynting vector is along the y-axis,
and such that it is directed up for y > 0 and down for
y < 0. Therefore the positive and negative parts of the y-
axis are field lines, and y = 0 is a singular point dividing
the two parts.

The field lines of S(r) follow from Eq. (27) with i re-
placed by S. In a similar way as in Section 5 we then find
the equations for the field lines

e _,

a =Xy, (50)
dy _ _

=T+ ), (s1)
from which

dx Xy

&R 2

This equation is separable, and the field line that goes
through the point (X, ) is found to be

— 2
% = 5oy 2 (53)
yoth

Here we see y as the independent variable, which can be po-
sitive or negative. Replacing y by —y has no effect, so the
field line pattern is symmetric for reflection in the X-axis.
Fig. 10 shows the field line picture. All field lines start on
the X-axis, which is a singular line, and run to infinity.
Let us take yy = 0, so that X, is the ¥-coordinate of the ini-

Fig. 10. The figure shows the field lines for the Poynting vector in the xy-
plane for the case of a dipole moment along the x-axis, and with #=1.
The field lines start on the x-axis, which is a singular line, and then run to
infinity where they approach asymptotically a straight line through the
origin.

tial point which is now on the x-axis. Then for y large, the
field lines approach the asymptotic line y = (h/Xy)x for
¥ > 0, which is a line through the origin with slope %/x,.
This slope gets smaller with increasing X,, as can also be
seen from the figure.

9. Dipole moment rotating in the xy-plane

Finally we consider a dipole moment that rotates in the
xy-plane, as in Section 6. With & given by Eq. (30), the
Poynting vector becomes

2 g 1 3
S(r =—0—{e,+—[q2<2+—>—1}e(}. 54
"= G i\ "7 9 ' >4

We see that the origin of coordinates is a singular point,
due to the overall factor of ¢, and that for ¢ large the field
lines run approximately in the outward radial direction.
For the equations for the field lines we now use polar
coordinates (¢,¢) in the Xy-plane. We then obtain

dqi
dp 1 [,(, 3

This set can be solved by elementary methods, and the
result is

1 1
——<2+—+?>, 0 < g < o0 (57)

Here we see g as the independent parameter. The Cartesian
coordinates for points on a field line are given by Eqgs. (42)
and (43), which show that the field lines start at the origin
of coordinates. In Eq. (57) ¢ is an arbitrary constant,
which is equal to ¢y = ¢(o0), and each choice of ¢( deter-
mines a field line. For a given /, the different field lines only
differ in their values of ¢, and therefore they all have the
same shape. Changing ¢, simply rotates the curve in the
Xy-plane.

Fig. 11 shows a field line for ¢y = 0. For ¢ =0 we have
¢1 = h, and the logarithm in Eq. (57) is —oo. Therefore we
have ¢(0) = co. When ¢ increases, ¢(¢) becomes finite, so it
decreases, which gives a clockwise rotation of the field line
around the origin. We conclude that the Poynting vector
has a vortex at the origin of coordinates. On the other
hand, for ¢ large we find from Eq. (57) by Taylor expansion

P(q) ~ o — . (58)

When ¢ increases here, ¢(g) increases, and this gives a coun-
terclockwise rotation, until ¢(g) approaches its asymptotic
value of ¢,. For ¢ large we have ¢(q) =~ ¢, and one may ex-
pect that the field line approaches a straight line through the
origin, making an angle ¢, with the positive x-axis, which
would be the case if we would have ¢(q) = ¢o. However,
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Fig. 11. Shown is a field line of the Poynting vector in the xy-plane for a
rotating dipole moment, a distance H = 0.5/k, above the xy-plane. This
field line is represented by Eq. (57) with ¢g = 0. The field line starts at the
origin, spirals out clockwise, then changes to a counterclockwise rotation,
and eventually it levels off to the asymptote y = 2, indicated by the dashed
line.

from Eq. (58) we obtain cos¢(g) ~ cos¢g + (2/¢)sing,, and
since we have X = g cos ¢(g), the second term gives a finite
contribution for ¢ large. The same holds for y from Egq.
(43), and when we eliminate ¢ as the independent variable
we find the equation for the asymptote of the field line to be

y=Xtan ¢, (59)

This line does not go through the origin, but has a y
intercept of —2/cos¢g. For ¢po = 0, as in Fig. 11, the asymp-
tote is y = —2.

10. Conclusions

We have studied the current density on the surface of a
perfect conductor, induced by a nearby oscillating mag-
netic dipole. For a dipole moment along the z-axis, the field
lines are clockwise and counterclockwise running circles,

separated by singular circles. For a linear dipole moment
which is oriented parallel to the surface, we found the com-
plex field line pattern shown in Fig. 6. The field lines are
loops which start at a singular point on the y-axis and
end on another singular point on the y-axis. Near the ori-
gin of coordinates there are also field lines which form
closed loops, circling around a singular point on the x-axis.
When the dipole moment rotates in the xy-plane, the field
line pattern is determined by the spiral of Fig. 9. Field lines
run inward along the spiral, turn around near a chosen
point, and then run back outward along the spiral. We
have also considered the field lines of the Poynting vector
near the surface for the same orientations of the dipole.
It was found that for a dipole moment along the z-axis
the Poynting vector near the surface vanishes as a result
of the fact that the induced surface charge density is zero.
For a linear dipole moment parallel to the surface the field
lines of the Poynting vector are illustrated in Fig. 10, and
for a dipole moment rotating parallel to the surface the
Poynting vector has a vortex at the origin of coordinates,
as shown in Fig. 11.
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