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Conservation of charge at an interface
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Abstract

In a continuous medium, the charge density and the current density are related by the continuity equation, expressing conservation of
charge. When an interface separates two continuous media, we can also have a surface charge density r and a surface current density i on
the interface surface. We consider an interface of arbitrary shape, and derive the continuity equation relating r and i from the principle of
conservation of charge. The result can be expressed in terms of the surface divergence of i on the surface, familiar from tensor analysis. In
an independent approach, we derive the same equation from Maxwell’s equations at the boundary.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

When electromagnetic radiation scatters off a surface, a
charge density q(r, t) and current density j(r, t) are induced
in the material and a surface charge density r(r, t) and sur-
face current density i(r, t) may appear on the surface of the
material. We shall consider the boundary, or interface,
between two continuous media, and we shall allow the
shape of the boundary to be arbitrary (that is, not flat).
In a continuous medium, the electric field E(r, t) and mag-
netic field B(r, t) are related to the charge and current den-
sities q(r, t) and j(r, t) as given by Maxwell’s equations:

r � E ¼ q
eo

; ð1Þ

r � E ¼ � oB

ot
; ð2Þ

r � B ¼ 0; ð3Þ

r � B ¼ lojþ eolo

oE

ot
: ð4Þ
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By taking the divergence of (4) and using (1) we obtain

r � j ¼ � oq
ot
; ð5Þ

the continuity equation, expressing the conservation of
charge.

Across a boundary between two continuous media, the
fields E, B, q and j can be discontinuous, leaving the opera-
tions div and curl in Eqs. (1)–(5) undetermined. To find
Maxwell’s equations for a field point r on the boundary
between two continuous media, we integrate (1) and (3) over
a volume V containing r, as shown in Fig. 1, and include the
possibility of a surface charge density. We then use the
divergence theorem and then let the volume shrink to a
Gaussian pillbox. For Eqs. (2) and (4) we similarly integrate
over a Stokessian loop around r. This familiar procedure [1]
leads to four equations, replacing Eqs. (1)–(4). The four
equations can be combined into two as

E2 � E1 ¼
r
eo

n̂; ð6Þ

B2 � B1 ¼ loi� n̂; ð7Þ

with n̂ the unit normal vector on the surface, directed from
medium 1 to medium 2. Here, E1 (B1) and E2 (B2) are the
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Fig. 1. The surface S separates medium 1 from medium 2, and the normal
vector n̂ on S points from 1 to 2. Volume V with boundary surface A is
partially in medium 1 and partially in medium 2, and the intersection
between the surfaces A and S is the curve C. The normal vector on A is
indicated by N̂, and it points to the outside of the volume. The unit vector
t̂ is perpendicular to C, directed towards the outside, and lies in the local
tangent plane to S.
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Fig. 2. The volume V of Fig. 1 is now taken as illustrated in the figure.
The top and the bottom of A are in medium 2 and 1, respectively, they
closely follow the shape of the surface S, and they are separated by a
negligible distance. For the top surface we then have N̂ ¼ n̂ and for the
bottom we have N̂ ¼ �n̂. By setting the current flowing out of the volume
equal to the loss rate of the charge inside the volume, we arrive at Eq. (9),
which is the integral form of conservation of charge on the surface S.
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values of the electric (magnetic) field just off the surface in
medium 1 and 2, respectively. The right-hand side of Eq.
(6) is proportional to n̂, and has no component parallel
to the surface. Therefore, Eq. (6) implies that the parallel
component of E is continuous across the surface, which
is usually referred to as a boundary condition. Eq. (6) also
implies that the electric field jumps with rn̂=eo across the
boundary. Eq. (7) can be read in a similar way.

The continuity equation (5) relates the charge and cur-
rent densities q and j in a continuous medium, and this
equation follows directly from Maxwell’s equations (1)
and (4). At the interface, Maxwell’s equations take the
form of Eqs. (6) and (7), now involving the surface charge
and current densities r and i. One would then expect that
an equation similar to (5) could be derived, expressing con-
servation of charge at the boundary, and thereby relating r
and i. It appears that this step is not made in the literature.
In this communication we shall derive the equivalent of (5)
for a point on the boundary.

2. Conservation of charge

A surface S separates two media, labeled 1 and 2. We
consider a volume V with boundary surface A, which is
partially in medium 1 and partially in medium 2, as illus-
trated in Fig. 1. The intersection between A and S is a curve
C on S. The unit normal vector on A will be indicated by
N̂, and the unit normal on the interface surface S by n̂. Vec-
tor t̂ is a unit vector, perpendicular to C, directed outward,
and in the tangent plane of S. Conservation of charge then
requires that the charge flowing out of V through A per
unit of time is equal to the loss rate of the charge inside
V. Expressed in terms of j, i, q and r this becomesI

A
j � N̂ dAþ

I
C

i � t̂ ds ¼ � d

dt

Z
V

q dV � d

dt

Z
S

r dS: ð8Þ

Here, ds is the infinitesimal arc length of C, and the second
integral on the right-hand side runs over the part of the
interface which is enclosed by C.

We now take the volume V as in Fig. 2. The top and the
bottom follow the curving of S, with the top just in medium
1 and the bottom just in medium 2. The height Dh, separat-
ing the top and the bottom, will be considered very small,
and approaching zero. Therefore, the volume V goes to
zero for Dh! 0, and so

R
q dV ! 0. For the first integral

on the left-hand side of Eq. (8), only the top and the bot-
tom contribute in the limit Dh! 0, and so Eq. (8) reduces
toZ

S
ðj2 � j1Þ � n̂ dS þ

I
C

i � t̂ ds ¼ � d

dt

Z
S

r dS: ð9Þ

Here j1 and j2 are the current densities in medium 1 and 2,
respectively, and evaluated just off the surface. Eq. (9) only
involves fields along the surface, and is the integral form of
conservation of charge on an interface. It is interesting to
see that, besides i and r, also the volume current density
j appears.

In order to arrive at a differential form similar to Eq. (5),
we let S shrink to DS, and consider the limit D S! 0. For
the first and the last integrals in Eq. (9) we simply set
dS! DS, and leave out the integral signs. The integral
containing i represents a complication. We now define
the quantity $S Æ i as follows:

rS � i ¼
1

DS

I
C

i � t̂ ds; DS ! 0: ð10Þ

Here the contour C is the boundary of DS. The continuity
equation then becomes

rS � iþ ðj2 � j1Þ � n̂ ¼ �
or
ot
: ð11Þ

Apart from the appearance of j, this equation is identical in
form to Eq. (5). The quantity $S Æ i, as defined by Eq. (10),
has yet to be determined. It is written as a divergence, but
since i is a vector which is only defined in the tangent plane
of S, this divergence cannot be the same as the usual diver-
gence of a vector field in space (as in Eqs. (1), (3) and (5)).
The notation is inspired by the coordinate independent def-
inition of the regular divergence [2], which has a similar
appearance. Furthermore, for a flat surface the divergence
theorem in two dimensions holds [3], from which (10) fol-
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lows as a coordinate independent definition of the regular
$ Æ i. Therefore, for a flat surface the $S Æ i defined by Eq.
(10) is the usual two-dimensional divergence, and when
we take the surface as the xy-plane we have $S Æ i = oix/
ox + oiy/oy.

3. The tangent plane

A point in space can be represented by its Cartesian
coordinates (x,y,z), or equivalently by its position vector
r = xex + yey + zez. The collection of points that form the
surface S can then be parametrized as x = x(u1,u2),
y = y(u1,u2) and z = z(u1,u2), with u1 and u2 free parame-
ters, or equivalently as r = r(u1,u2). A parameter curve on
S is defined as the curve that results if we keep one param-
eter fixed in r = r(u1,u2) while varying the other. The par-
tial derivatives of r(u1,u2) with respect to u1 and u2 are
tangent vectors of the parameter curves, and we shall indi-
cate these by c1 and c2, respectively. With the notation oi as
short for o/oui, these vectors are

ci ¼ oirðu1; u2Þ: ð12Þ
For a given point on S, these vectors span the tangent
plane, and as usual we consider the given point on S as
the origin of coordinates for the tangent plane. Any vector
T in the tangent plane is then a linear combination of c1

and c2:

T ¼ T ici: ð13Þ
We shall adopt the Einstein summation convention in
which a summation over an index is implied if it appears
as both a superscript and a subscript in a formula. The
two numbers Ti are called the contravariant components
of vector T. The surface current density i under consider-
ation here is such a vector, since at any point on the surface
this i is in the local tangent plane. Fig. 3 illustrates the
situation.

Vector fields in space, like E, B, and j, will also have a
value near a point on S. Their parallel components are vec-
tors in the tangent plane, and their perpendicular compo-
nents are directed along or opposite to the normal vector
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Fig. 3. The surface S is parametrized with the free parameters u1 and u2.
For a given point on the surface, two parameter curves intersect, and the
vectors c1 and c2 are the tangent vectors to these parameter curves at that
point. Vectors c1 and c2 span the local tangent plane, so that an arbitrary
vector T in the tangent plane is a linear combination of c1 and c2.
n̂ at this point. Since n̂ is perpendicular to both c1 and c2,
it is given by

n̂ ¼ �1

jc1 � c2j
c1 � c2: ð14Þ

The ±1 indicates the two possible orientations of n̂. We
shall leave this orientation unspecified and carry the ±1
along, keeping in mind that in an actual problem one usu-
ally makes a choice.
4. Fundamental tensor

The fundamental tensor of S is defined as the usual dot
product in space. Its covariant components gij with respect
to the basis c1, c2 are by definition

gij ¼ ci � cj; ð15Þ

and these four numbers are functions of the parameters u1

and u2. They can also be seen as the matrix elements of a
symmetric 2 · 2 matrix G. The contravariant components
of the fundamental tensor are indicated by gk‘, and these
four numbers are by definition the solution of the set of
equations

gk‘g‘i ¼ dk
i ð16Þ

with dk
i the Kronecker delta. Or, the gk‘ are the matrix

elements of the inverse matrix of G.
We then define vectors c1 and c2 as

ci ¼ gijcj: ð17Þ
They are linear combinations of c1 and c2, and they form
what is called the reciprocal basis. From Eqs. (16) and
(17) it follows that

ci � ck ¼ di
k; ð18Þ

so the reciprocal basis vector c1 (c2) is perpendicular to the
regular basis vector c2 (c1). From Eqs. (13) and (18) we see
that the contravariant components of T are given by

T i ¼ ci � T; ð19Þ
e.g., they are the projections of T onto the reciprocal basis.
A vector T can be represented with respect to the reciprocal
basis as

T ¼ T ic
i; ð20Þ

where the Ti are the covariant components of T, and with
Eq. (18) we see that

T i ¼ ci � T: ð21Þ
The covariant and contravariant components of T are
related as Tj = gjiT

i, and the contravariant components of
the fundamental tensor are also given by gij = ci Æ cj.

The determinant of the matrix G, representing the fun-
damental tensor, is detG = g11g22 � g12g21, and one verifies
by inspection that this is equal to

det G ¼ jc1 � c2j2: ð22Þ
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5. Differentiation in the tangent plane

When we write a vector in the tangent plane as T = Tici,
then both the components Ti and the basis vectors ci are
functions of the parameters u1 and u2. The parameter
dependence of Ti can, of course, be anything, but the
parameter dependence of the basis vectors is determined
by the shape of S, e.g., by the function r(u1,u2). If one needs
to differentiate T with respect to u1 or u2, then one needs the
derivatives of ci. The derivative of ci is not necessarily in the
tangent plane, and as a matter of notation we write

ojci ¼
k

j i

� �
ck þ hjin̂: ð23Þ

The components of this vector ojci in the tangent plane, the
k

j i

� �
, are called Christoffel symbols (of the second

kind), and the perpendicular component hji of the vector
ojci is a covariant component of the second fundamental
tensor. With the function r(u1,u2) given, this is
ojci = oj oir(u1,u2), so that the Christoffel symbols and the
hji’s are determined by knowledge of the shape of the sur-
face. We see that the Christoffel symbols are symmetric
in their lower indices, because ojci = oicj, and that hij = hji.
From Eqs. (23) and (18) we have explicitly

k

j i

� �
¼ ck � ojci: ð24Þ
6. Evaluation of $S Æ T

Let us now consider a vector field T, defined on the sur-
face S, and T is in the tangent plane at every point on the
surface. The quantity $S Æ T is then defined as, Eq. (10),

rS � T ¼
1

DS

I
C

T � t̂ ds; DS ! 0: ð25Þ

For a point on the surface with parameters u1, u2 we take
DS as the part of the surface where u1 runs from u1 to
u1 + Du1 and u2 runs from u2 to u2 + Du2, as shown in
1c
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Fig. 4. In order to evaluate $S Æ T, as defined by Eq. (25), we consider the
small surface area DS shown in the figure.
Fig. 4. The vector representing the side AB is then approx-
imately rB � rA, and with rB � rA + (o1r)ADu1 we find from
Eq. (12) rB � rA � c1D u1. The side AD in the figure is sim-
ilarly represented by c2Du2. Since the area DS is approxi-
mately a parallelogram, the surface area is

DS � jc1 � c2jDu1Du2; ð26Þ
and with (22) this is

DS �
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p

Du1Du2: ð27Þ
The vector t̂ in Eq. (25) is a unit vector in the tangent plane,
perpendicular to C and directed to the outside of the loop.
For the side AD this vector must be perpendicular to c2 .
From Eq. (18) we see that c1 Æ c2 = 0, so that c1 is perpen-
dicular to c2. Therefore, t̂ must be proportional to c1. From
Eq. (17) we derive the explicit form

c1 ¼ 1

det G
ðg22c1 � g12c2Þ: ð28Þ

Since detG > 0 and g22 = c2 Æ c2 > 0 we observe that the c1

component of c1 is positive, and therefore t̂ must be in
the opposite direction of c1. From Eqs. (18) and (28) we
have c1 Æ c1 = g22/detG, and therefore

t̂ � �c1

ffiffiffiffiffiffiffiffiffiffiffiffi
det G

g22

s
ð29Þ

for the side AD. We write � here, instead of an equal sign.
Eq. (29) is exact for point A, but an approximation for
other points on the side AD. For the length of the side
AD we have Ds � jc2jDu2, which is Ds � ffiffiffiffiffiffi

g22

p
Du2, since

g22 = c2 Æ c2. Therefore, we have for the side AD

t̂Ds � �c1
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p

Du2: ð30Þ
If we now take the dot product with T, we find with Eq.
(19)

T � t̂Ds � � T 1
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p� �

A
Du2: ð31Þ

The T1 and G depend on u1 and u2, and here we have indi-
cated explicitly that they have to be evaluated at point A.

For the contribution of the side BC to the integral, every-
thing is the same, except that t̂ must be taken in the opposite
direction, as compared to the t̂ in Eq. (29). For the side BC

we have to evaluate T1 and G at point B, for which

T 1
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p� �

B
� T 1

ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p� �

A

þ Du1o1 T 1
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p� �

A
: ð32Þ

Therefore, along BC

T � t̂Ds � T 1
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p� �

A
þ Du1o1 T 1

ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p� �

A

h i
Du2: ð33Þ

When we add Eqs. (31) and (33) we notice that the first
term on the right-hand side of Eq. (33) cancels against
the right-hand side of Eq. (31). In a similar way we obtain
the contributions to the integral from sides AB and DC.
For the total integral around the loop we then find
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I
C

T � t̂ ds � oi T i
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p� �

Du1Du2: ð34Þ

Then we divide by DS �
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p

Du1Du2, which then yields

rS � T ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

det G
p oi T i

ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p� �

; ð35Þ

as an exact result in the limit DS! 0. We note that the
evaluation of $S Æ T involves the contravariant components
of T, which are Ti = ci Æ T.

Apparently, the quantity $S Æ T, as defined by Eq. (25),
is a meaningful quantity, and Eq. (35) explicitly expresses
how $S Æ T can be evaluated for an arbitrary coordinate
system of the surface. The same holds of course for $S Æ i

in Eq. (10), and therefore Eq. (11) is the proper differential
form of conservation of charge at an interface. If the sur-
face is flat, taken as the xy-plane, then the tangent plane
is the xy-plane itself, and we have u1 = x, u2 = y. Then
c1 = oxr = ex and c2 = oyr = ey, and G is the unit matrix
with detG = 1. With gji = dji and Tj = gjiT

i, the distinction
between contravariant and covariant components of a
vector disappears, and therefore Eq. (35) reduces to
$S Æ T = oiT

i, which is the regular divergence in two
dimensions.

The result in Eq. (35) can also be expressed as

rS � T ¼ oiT i þ T i

2 det G
oi det G: ð36Þ

With the determinant of G given by Eq. (22), its derivatives
with respect to the surface parameters u1 and u2 can be
evaluated by means of Eq. (23). The result is

oi det G ¼ 2 det G
j

i j

� �
: ð37Þ

The alternative expression for $S Æ T then becomes

rS � T ¼ oiT i þ
j

i j

� �
T i: ð38Þ

In order to use this expression, one needs to know the
Christoffel symbols of the surface, given by Eq. (24), rather
than only the determinant of G.

Our two-parameter surface S, embedded in three dimen-
sional space, is a simple example of a Riemannian manifold
[4]. In the general theory of tensor analysis on manifolds
with a metric (a Riemann space) one defines the covariant
derivative of a contravariant component of a vector field
defined in the tangent space of the manifold by (p. 71 of
Ref. [4], or Ref. [5])

T i
;k ¼ okT i þ

i

k j

� �
T j: ð39Þ

In terms of this covariant derivative, we can write $S Æ T as

rS � T ¼ T i
;i; ð40Þ

which is the tensor contraction of T i
;k. In the literature, this

contracted covariant derivative is usually simply called the
divergence of T. Since in our context we also have the usual
divergence in three-dimensional space, we shall call $S Æ T

the surface divergence of T on S.
7. Derivation from Maxwell’s equations

In a continuous medium, the continuity equation (5) fol-
lows immediately from Maxwell’s equations in the med-
ium. At the boundary, Maxwell’s equations are given by
Eqs. (6) and (7), and one would expect that it should also
be possible to derive the continuity equation at the bound-
ary, Eq. (11), directly from Maxwell’s equations at the
boundary. To this end we first take the cross product with
n̂ on both sides of Eq. (7), which yields

i ¼ 1

lo

n̂� ðB2 � B1Þ: ð41Þ

From the result of the previous section we know that we
should consider the surface divergence of i on S. On the
right-hand side, the B1 and B2 are the values of the mag-
netic field B just off the surface in medium 1 and 2, respec-
tively, and these vectors do not lie in the local tangent
plane. The right-hand side of Eq. (41), however, is a vector
in the tangent plane, due to the cross product with n̂, and
we can consider its surface divergence. In Appendices A
and B, C we derive the following theorem. Let F be a vector
field in space. Then F also has a value on and near the sur-
face S. The theorem then states that the surface divergence
of n̂� F, which is a vector in the tangent plane, can be ex-
pressed as

rS � ðn̂� FÞ ¼ �n̂ � ðr � FÞ; ð42Þ
where $ · F on the right-hand side is the usual curl of F in
three dimensions. With this theorem we find from Eq. (41):

rS � i ¼ �
1

lo

n̂ � ðr � B2 �r� B1Þ: ð43Þ

Since B1 and B2 are the values of the magnetic field just off
the surface, they satisfy Maxwell’s equations (1)–(4). With
Eq. (4), we then obtain

rS � i ¼ �n̂ � ðj2 � j1Þ � eo
o

ot
n̂ � ðE2 � E1Þ: ð44Þ

Then we substitute the right-hand side of Eq. (6) for
E2 � E1, which yields

rS � i ¼ �n̂ � ðj2 � j1Þ �
or
ot
; ð45Þ

and this is the continuity equation at the boundary.

8. Conclusions

In a continuous medium we have a charge density q(r, t)
and current density j(r, t), which are related by the continu-
ity equation (5). This equation can be derived from conser-
vation of charge, by setting the current flowing out of a
volume equal to the loss rate of the charge inside the vol-
ume, or it can be derived from Maxwell’s equations (1)
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and (4) for a continuous medium. We have considered an
interface between two media. Then, at the interface, there
may appear a surface charge density r(r, t) and a surface
current density i(r, t). Maxwell’s equations for a point on
the interface take the form of Eqs. (6) and (7), involving
r(r, t) and i(r, t). Also the continuity equation (5) will take
a different form for a point on the interface.

By considering conservation of charge, we have shown
that the continuity equation at the interface is given by
Eq. (11), involving the quantity $S Æ i, defined by Eq.
(10). In Section 6 we have evaluated this quantity for an
arbitrary vector field T in the tangent plane of the bound-
ary surface between the two media. The resulting expres-
sion for $S Æ T is given by Eq. (35) in terms of the
determinant of the matrix G, containing the covariant com-
ponents of the fundamental tensor of the surface, and the
contravariant components Ti of the vector field T. Alterna-
tively, the surface divergence $S Æ T could be expressed in
the form given by Eq. (38), now involving the Christoffel
symbols of the surface.

Just as Eq. (5) could be derived from Maxwell’s equa-
tions for a continuous medium, we have derived the con-
tinuity equation (11) for a point on the interface from
Maxwell’s equations at the interface, Eqs. (6) and (7), in
Section 7. For this derivation we needed the theorem
given by Eq. (42), where F is a vector field near the bound-
ary, evaluated at the boundary. The theorem relates the
surface divergence of the vector field n̂� F, which is a vec-
tor field in the tangent plane, to the curl of F just off the
boundary.
Appendix A

The derivation of the continuity equation at the bound-
ary from Maxwell’s equations in Section 7 relies on the the-
orem given by Eq. (42). In this appendix we give the first
step of its proof. We consider a vector field F in space.
For a field point on the surface S, we can write F as

F ¼ F jc
j þ F ?n̂; ðA:1Þ

where the first term on the right-hand side is the compo-
nent of F in the tangent plane. Note that in the tangent
plane we use the covariant components Fj of F. Then

n̂� F ¼ F jn̂� cj: ðA:2Þ

We now want to consider the surface divergence of the
right-hand side of this equation, and we shall use the form
given by Eq. (38). This expression involves the ith contra-
variant component, which is, according to Eq. (19)

ðn̂� FÞi ¼ F jc
i � ðn̂� cjÞ: ðA:3Þ

The reciprocal basis vectors are defined by Eq. (17), and
the normal vector is given by Eq. (14). This gives c1 as
given by Eq. (28), and a similar expression for c2 can be de-
rived. With some manipulations we can then obtain the
expressions
c1 ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p c2 � n̂; ðA:4Þ

c2 ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p c1 � n̂: ðA:5Þ

Taking the cross product with n̂ then yields

n̂� c1 ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p c2; ðA:6Þ

n̂� c2 ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p c1: ðA:7Þ

With Eq. (18) we then find

c2 � ðn̂� c1Þ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p ; ðA:8Þ

c1 � ðn̂� c2Þ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p ; ðA:9Þ

and c1 � ðn̂� c1Þ ¼ c2 � ðn̂� c2Þ ¼ 0. With Eq. (A.3) this
gives

ðn̂� FÞ1 ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p F 2; ðA:10Þ

ðn̂� FÞ2 ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p F 1; ðA:11Þ

and with this

oiðn̂� FÞi ¼ �o2

F 1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p � o1

F 2ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p : ðA:12Þ

From Eq. (37) we find

ok
1ffiffiffiffiffiffiffiffiffiffiffiffi

det G
p ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi

det G
p

j

k j

� �
; ðA:13Þ

with which Eq. (A.12) becomes

oiðn̂� FÞi ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p o2F 1 � o1F 2 � F 1

j

2 j

� �
þ F 2

j

1 j

� �� �
:

ðA:14Þ
We then substitute this as the first term on the right-hand
side of Eq. (38), and for the second term on the right-hand
side we use Eqs. (A.10) and (A.11). It then appears that all
terms with Christoffel symbols cancel, and we find

rS � ðn̂� FÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p ðo2F 1 � o1F 2Þ: ðA:15Þ
Appendix B

In order to relate the right-hand side of Eq. (A.15) to
$ · F, we need a general expression for $ · F in arbitrary
curvilinear coordinates. Since in the physics literature one
almost exclusively uses orthogonal coordinate systems,
we include here the result for arbitrary coordinates for con-
venience. The coordinate independent definition of $ · F

follows from Stokes’s theorem, and is [2]

N̂ � ðr � FÞ ¼ 1

DA

I
C

F � x̂ ds; DA! 0: ðB:1Þ
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Here, C is the boundary curve of the small surface area DA,
and N̂ is the unit normal vector on DA. Vector x̂ is the unit
tangent vector to C, and its direction goes together with N̂

according to the right-hand rule.
In order to evaluate $ · F, we represent a point in space

as r = r(u1,u2,u3), with u1, u2 and u3 as free parameters. As
in Eq. (12) we now have three basis vectors at each point,
defined by ci = oi r(u1,u2,u3), which are tangent to the
parameter curves and which span the three dimensional
tangent space. Just as in Section 4 we define the compo-
nents of the fundamental tensor as gij = ci Æ cj, which can
now be organized in a 3 · 3 matrix. With gij the matrix ele-
ments of the inverse matrix we define a reciprocal basis by
ci = gijcj, for which ci � ck ¼ di

k. Any vector T in the tangent
space can then be written as T = Tici or T = Tic

i, and
Ti = ci Æ T, Ti = ci Æ T. The reciprocal basis vectors ci can
be constructed explicitly. We have

c3 ¼ c1 � c2

c3 � ðc1 � c2Þ
; ðB:2Þ

and the others follow by cyclic permutation. The equiva-
lent of Eq. (22) becomes

det G ¼ jc3 � ðc1 � c2Þj2: ðB:3Þ
The evaluation of $ · F follows the same steps as the

derivation of $S Æ T in Section 6. We consider the area
DA as part of the parameter plane u3 = constant, as shown
in Fig. 5. We take

N̂ ¼ 1

jc1 � c2j
c1 � c2; ðB:4Þ

so that the orientation of C is counterclockwise in the fig-
ure. Comparison with Eq. (B.2) shows

N̂ ¼ 1

jc1 � c2j
fc3 � ðc1 � c2Þgc3: ðB:5Þ

For the left-hand side of DA we have x̂ ¼ �c2=jc2j and
Ds = |c2|Du2, so that x̂Ds ¼ �c2Du2 and F � x̂Ds ¼ �F 2Du2.
1c

2c

3c

AΔ

),,( 3211 uuuu +Δ

),,( 3221 uuuu +

),,( 321 uuu

Fig. 5. For the evaluation of $ · F in Appendix B, we consider the small
area DA in the plane u3 = constant, as shown in the figure. With the
normal vector chosen as in Eq. (B.4), the orientation of the loop is
counterclockwise. Vector c3 is shown for illustration, but it may equally
well point towards the other side of DA.
For the right-hand side of DA everything is the same, except
that x̂ picks up a minus sign and that F2 has to be evaluated
at (u1 + Du1,u2,u3). The sum of the contributions from the
left and the right is then (o1F2 )Du1Du2. For the top and the
bottom we get �(o2F1)Du1Du2, and thereforeI

C
F � x̂ ds � ðo1F 2 � o2F 1ÞDu1Du2: ðB:6Þ

The surface area is DA � |c1 · c2|Du1Du2, so Eq. (B.1) be-
comes, after substituting N̂ from Eq. (B.5)

c3 � ðr � FÞ ¼ 1

c3 � ðc1 � c2Þ
ðo1F 2 � o2F 1Þ; ðB:7Þ

which is the final result. The other two components of
$ · F follow by cyclic permutation of the indices. For a
right-handed coordinate system, as in Fig. 5, we have
c3 Æ (c1 · c2) > 0, and Eq. (B.7) can be simplified a little by

setting c3 � ðc1 � c2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p

, according to Eq. (B.3).
Appendix C

We now consider again the surface S of the interface
between the two media, which is parametrized by u1 and
u2. We then add a third coordinate u3 to represent a point
off the surface S, in such a way that, for instance, u3 = 0
corresponds to a point on S. This gives a parametrization
of space around S with u1, u2 and u3 as free parameters.
Alternatively, let space be parametrized with u1, u2 and
u3, as in Appendix B. Then each u3 = constant represents
a parameter surface in space. Then we assume that the
parametrization is chosen such that for one particular
value of u3 the parameter surface coincides with S.

For each point on S the unit normal vector n̂ is given by
Eq. (14), and since we now have a third parameter u3, we
also have the reciprocal vector c3, given by Eq. (B.2). No
matter how we choose this third parameter, both vectors
are related as

c3 ¼ �1

c3 � ðc1 � c2Þ
jc1 � c2jn̂: ðC:1Þ

Then we substitute this expression for c3 in the right-hand
side of Eq. (B.7), which yields

jc1 � c2jn̂ � ðr � FÞ ¼ �ðo1F 2 � o2F 1Þ; ðC:2Þ
and with Eq. (22) this is

n̂ � ðr � FÞ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffi
det G
p ðo1F 2 � o2F 1Þ; ðC:3Þ

with G the G of the surface. The right-hand side of Eq.
(C.3) is just the negative of the right-hand side of Eq.
(A.15), so that

rS � ðn̂� FÞ ¼ �n̂ � ðr � FÞ; ðC:4Þ
which is the theorem used in Section 7.

With the third parameter u3 introduced to represent
points in space in the neighborhood of S, Eq. (14) defines
an n̂ for each point in space covered by the parametrization,
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so this makes n̂ a vector field in space. This n̂ is
perpendicular to the parameter surface u3 = constant
through that point. With F another vector field in space,
we have the vector identity r � ðn̂� FÞ ¼ F � ðr � n̂Þ�
n̂ � ðr � FÞ, where the divergence on the left-hand side is
the regular divergence in space. Here we have the additional
term F � ðr � n̂Þ on the right-hand side, as compared to Eq.
(C.4).

Since the vector n̂, defined by Eq. (14), is now a vector
field in space, we can computer� n̂. As shown in Appendix
B, for the curl we need the covariant components of n̂, which
are ni ¼ ci � n̂. From Eq. (14) these are n1 = n2 = 0, and

n3 ¼
�1

jc1 � c2j
c3 � ðc1 � c2Þ: ðC:5Þ

From Eq. (B.7) and the cyclic permutations for the other
components, we can then evaluate r� n̂. With some very
serious effort we find

r� n̂ ¼ �1

jc1 � c2j
c3 � o3ðc1 � c2Þ

� 1

jc1 � c2j3
c3 � f½ðc1 � c2Þ � ðc2 � c3Þ�o1ðc1 � c2Þ

þ ½ðc1 � c2Þ � ðc3 � c1Þ�o2ðc1 � c2Þg ðC:6Þ

for r� n̂ in arbitrary curvilinear coordinates. The partial
derivatives of c1 · c2 which enter this expression are all
crossed with c3, and we have explicitly

c3 � ojðc1 � c2Þ ¼
3

j 2

� �
c1 �

3

j 1

� �
c2: ðC:7Þ

Here,
k

j i

� �
¼ ck � ojci ðC:8Þ

are the Christoffel symbols for the parametrization of space
with curvilinear coordinates u1, u2 and u3, as in Appendix
B. We now see that in Eq. (C.6) each term on the right-
hand side is a linear combination of c1 and c2, so r� n̂

is in the tangent plane to the surface u3 = constant, which
is spanned by c1 and c2, from which we have
n̂ � ðr � n̂Þ ¼ 0. If at least one of the Christoffel symbols
appearing in Eq. (C.7) is nonzero, we could have
r� n̂ 6¼ 0. In that case, rS � ðn̂� FÞ is not equal to
r � ðn̂� FÞ, which has the additional term F � ðr � n̂Þ.

For an orthogonal system, where the vectors c1, c2 and
c3 are mutually perpendicular, Eq. (C.6) simplifies to

r� n̂ ¼ �1

jc1 � c2j
c3 � o3ðc1 � c2Þ; ðC:9Þ

which is interesting in its own right.
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