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Vortices in multipole radiation
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Abstract

The Poynting vector for electric and magnetic multipole radiation of arbitrary order (‘,m) has been obtained, and an

expression for the field lines of this vector field has been derived. It is shown that the field lines lie on a cone, and that,

for m 6¼ 0, they exhibit a vortex structure with a dimension of about a wavelength around the multipole. The field lines

wind around the z-axis in the neighborhood of the multipole, and outside this vortex region the field lines run approx-

imately radially outward. We have also derived the asymptotic limit of a field line.
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1. Introduction

The energy flow in an electromagnetic field is

represented by the field lines of the Poynting vec-

tor S(r). For a time-harmonic field with angular

frequency x this vector field is time independent

and is given by

SðrÞ ¼ 1

2l0

ReEðrÞ � BðrÞ�; ð1Þ

with E(r) and B(r) the complex amplitudes of the

electric and magnetic fields, respectively. Most
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interesting are radiation patterns which exhibit a

vortex structure in which the field lines of S(r) swirl
around a singular point or a singular line. Such vor-

tices occur quite naturally in radiation fields. The

oldest example is diffraction of a plane wave by a

half-infinite screen where a vortex appears at the

illuminated side of the screen [1]. In this case the sin-

gularity is a line which runs parallel to the screen,

and the field lines of the Poynting vector curl around

this line. Vortices also appear in the diffracted field
by a slit in a screen [2,3], in the interference pattern

of three plane waves [4], in Laguerre–Gaussian laser

beams [5–8], and in the focal plane of a lens [9,10].

For non-stationary fields the singular points or lines

may propagate [11].
ed.

mailto:arnoldus@ra.msstate.edu


254 H.F. Arnoldus / Optics Communications 252 (2005) 253–261
In the mentioned examples, the vortices are typ-

ically a result of diffraction or interference. At a

singular point or line the Poynting vector vanishes,

and the direction of S(r) in the neighborhood of

the singularity is undetermined. In the case of the
Laguerre–Gaussian beam, the rotation in the vor-

tex is an indication of the angular momentum that

is carried by the laser beam. It was shown recently

[12] that a vortex is present in the field of an elec-

trical dipole when the radiation is emitted in a

Dm = ±1 atomic transition. In such a transition,

the dipole moment rotates in the xy-plane if the

z-axis is taken as the quantization axis. The field
lines of the Poynting vector circle around the

z-axis with the same orientation as the rotation of

the dipole moment. The field lines emanate from

the location of the dipole (r = 0), making the origin

of coordinates a singular point. In contrast to the

previous examples, the magnitude of the Poynting

vector near the singular point grows without lim-

its. Another difference is that the rotation in the
emitted field is a reflection of the rotation of the

source, rather than a result of interference. In this

Communication we show that a vortex appears in

the Poynting vector of electric and magnetic multi-

pole radiation of arbitrary order, and we derive an

explicit formula for the field lines.
2. Poynting vector of a multipole field

We shall consider a source ofmultipole radiation

located at the origin of coordinates, and embedded

in a medium with index of refraction n (assumed to

be positive). The order of the multipole is indicated

by (‘,m), with ‘ = 1 for a dipole, ‘ = 2 for a quadru-

pole, etc., and for a given ‘ the value of m can be
�‘,�‘ + 1, . . . , ‘. The type of multipole will be dis-

tinguished by the parameter g, and we use g = 1 and

g = �1 for a magnetic and an electric multipole,

respectively. The electric and magnetic fields emit-

ted by a multipole of type g and order (‘,m) can

be written in the compact form

EðrÞ ¼ ik30
4pe0

bg‘mAg‘mðrÞ; ð2Þ

BðrÞ ¼ n
c

ik30
4pe0

gbg‘mA�g‘mðrÞ; ð3Þ
in terms of the standard multipole potentials

Ag‘m(r) (defined below). Here, k0 = x/c, and the

overall constant bg‘m, the multipole coefficient, is

determined by the current density of the source

emitting the radiation.
When we substitute expressions (2) and (3) into

Eq. (1) we obtain

Sg‘mðrÞ ¼ n2k20P 1gReAg‘mðrÞ � A�g‘mðrÞ�; ð4Þ

where we have added the subscripts g, ‘ and m to
the Poynting vector. The overall constant P1 is de-

fined by

P 1 ¼
x4

32p2e0c3n
jbg‘mj2; ð5Þ

which equals the power emitted by the multipole

(Eq. (31) below). Replacing g by �g on the

right-hand side of Eq. (4) has no effect, and

therefore the Poynting vectors for electric and

magnetic multipoles of the same order are the
same.

The multipole fields are often defined by consid-

ering the action of the orbital angular momentum

operator L = �ir · $ on the spherical harmonics

Y‘m(h,/) [13]. A more practical representation

[14–17] is in terms of vector spherical harmonics,

defined by

T‘‘0mðh;/Þ ¼
X
m0l

ð‘0m01l j ‘mÞY ‘0m0 ðh;/Þel; ð6Þ

with (‘
0
m

0
1lj‘m) a Clebsch–Gordan coefficient and

el a spherical unit vector. The g = 1 multipole
potential is then

A1‘mðrÞ ¼ hð1Þ‘ ðqÞT‘‘mðh;/Þ; ð7Þ

where we have set q = nk0r for the dimensionless

distance between the multipole and the field point

r, and hð1Þ‘ ðqÞ is a spherical Hankel function. For

g = �1 the multipole potential is
A�1‘mðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 1

2‘þ 1

r
hð1Þ‘�1ðqÞT‘‘�1mðh;/Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

‘

2‘þ 1

r
hð1Þ‘þ1ðqÞT‘‘þ1mðh;/Þ. ð8Þ
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3. Evaluation of the Poynting vector

In order to evaluate the Poynting vector

explicitly, we substitute the right-hand side of

Eq. (7) and the complex conjugate of the right-
hand side of Eq. (8) into Eq. (4) with g = 1. This

gives an expression involving three spherical

Hankel functions and two cross products be-

tween vector spherical harmonics. In Eq. (6),

the vector spherical harmonics are expressed in

terms of spherical unit vectors el, l = 1,0,�1.

For the present calculation it is more convenient

to use the spherical-coordinate unit vectors
r̂; eh and e/ for the representation of the func-

tions T‘‘0mðh;/Þ. These expressions are given in

Appendix A.

When we take the cross product of Eqs. (A.1)

and (A.3) with r̂ and compare to Eq. (A.2) we

obtains

îr� T‘‘þ1mðh;/Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

‘

2‘þ 1

r
T‘‘mðh;/Þ; ð9Þ

îr� T‘‘�1mðh;/Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 1

2‘þ 1

r
T‘‘mðh;/Þ. ð10Þ

Then we take again the cross product with r̂, use a

vector identity for r̂� ðr̂� . . .Þ, and we use Eqs.

(A.4) and (A.6) for the appearing dot products.

This yields

T‘‘þ1mðh;/Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 1

2‘þ 1

r
Y ‘mðh;/Þ̂r

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘

2‘þ 1

r
r̂� T‘‘mðh;/Þ; ð11Þ

T‘‘�1mðh;/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

‘

2‘þ 1

r
Y ‘mðh;/Þ̂r

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 1

2‘þ 1

r
r̂� T‘‘mðh;/Þ. ð12Þ

Subsequently we take the cross product of the

complex conjugate of these equations with

T‘‘m(h,/). For the last terms on the right-hand

sides this leads to

T‘‘mðh;/Þ � ½̂r� T‘‘mðh;/Þ�� ¼ ½T‘‘mðh;/Þ �T‘‘mðh;/Þ��̂r;
ð13Þ

where we have used r̂ � T‘‘mðh;/Þ ¼ 0, Eq. (A.5).

From Eq. (A.2) we find
T‘‘mðh;/Þ � T‘‘mðh;/Þ�

¼ 1

‘ð‘þ 1Þ
m2

sin2h
jY ‘mðh;/Þj2 þ

oY ‘m

oh

����
����
2

" #
. ð14Þ

The / dependence of the spherical harmonics can

be written as Y‘m(h,/) = Y‘m(h, 0)exp(im/) with

Y‘m(h, 0) a real-valued function of h. Therefore,

oY‘m/oh = exp(im/)oY‘m(h, 0)/oh, and from this

observation it follows that the right-hand side of

Eq. (14) is independent of /. We introduce the
abbreviation

N ‘mðhÞ ¼ T‘‘mðh;/Þ � T‘‘mðh;/Þ�; ð15Þ

which equals the normalized emitted power per

unit solid angle of a multipole of order (‘,m) (see

below Eq. (32)). We then obtain the desired cross

products:

T‘‘mðh;/Þ � T‘‘þ1mðh;/Þ�

¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘

2‘þ 1

r
N ‘mðhÞ̂r�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 1

2‘þ 1

r
Y ‘mðh;/Þ�

� T‘‘mðh;/Þ � r̂; ð16Þ
T‘‘mðh;/Þ � T‘‘�1mðh;/Þ�

¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 1

2‘þ 1

r
N ‘mðhÞ̂rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘

2‘þ 1

r
Y ‘mðh;/Þ�

� T‘‘mðh;/Þ � r̂. ð17Þ

For the Poynting vector we need the cross prod-

uct in Eq. (4) with g = 1, and this now becomes

A1‘mðrÞ � A�1‘mðrÞ�

¼ i

2‘þ 1
h
ð1Þ
‘ ðqÞ ð‘þ 1Þhð1Þ‘�1ðqÞ

� � ‘h
ð1Þ
‘þ1ðqÞ

�
h i

�N‘mðhÞr̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p
2‘þ 1

h
ð1Þ
‘ ðqÞ h

ð1Þ
‘�1ðqÞ

�
h

þ h
ð1Þ
‘þ1ðqÞ

�
i
Y‘mðh;/Þ�T‘‘mðh;/Þ � r̂. ð18Þ

The second term on the right-hand side can be sim-

plified with a recurrence relation for spherical Bes-

sel functions:

hð1Þ‘�1ðqÞ þ hð1Þ‘þ1ðqÞ ¼
2‘þ 1

q
hð1Þ‘ ðqÞ. ð19Þ

For the Poynting vector we need the real part

of the right-hand side of Eq. (18). One of the
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Wronski relations for spherical Bessel functions

[18] can be written as

Re ihð1Þ‘ ðqÞhð1Þ‘�1ðqÞ
� ¼ � 1

q2
; ð20Þ

and this gives

ReA1‘mðrÞ � A�1‘mðrÞ�

¼ 1

q2
N ‘mðhÞr̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p 1

q
jhð1Þ‘ ðqÞj2

� r̂�ReY ‘mðh;/Þ�T‘‘mðh;/Þ. ð21Þ

When we multiply Eq. (A.2) by Y‘m(h,/)*, then the

second term on the right-hand side is pure imagi-

nary, and gives no contribution. We obtain

ReY ‘mðh;/Þ�T‘‘mðh;/Þ

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p m
sin h

ehjY ‘mðh;/Þj2; ð22Þ

which simplifies the right-hand side of Eq. (21).
We now introduce the abbreviation

M ‘mðhÞ ¼
1

sin h
jY ‘mðh;/Þj2; ð23Þ

which is independent of /. The remaining spheri-

cal Hankel function in Eq. (21) is given by [19]

hð1Þ‘ ðqÞ ¼ ð�iÞ‘þ1 e
iq

q

X‘

k¼0

ð‘þ kÞ!
k!ð‘� kÞ!

i

2q

� �k

; ð24Þ

so if we set

A‘ðqÞ ¼
X‘

k¼0

ð‘þ kÞ!
k!ð‘� kÞ!

i

2q

� �k
�����

�����
2

; ð25Þ

then Eq. (21) becomes

ReA1‘mðrÞ � A�1‘mðrÞ�

¼ 1

q2
N ‘mðhÞr̂þ

m
q3

A‘ðqÞM ‘mðhÞe/. ð26Þ

Finally, the Poynting vector from Eq. (4) becomes

Sg‘mðrÞ ¼
P 1

r2
N ‘mðhÞr̂þ

m
q
A‘ðqÞM ‘mðhÞe/

� �
. ð27Þ

The result (27) is remarkably simple in appear-

ance. The function N‘m(h), which equals the

right-hand side of Eq. (14), involves the derivative

of Y‘m(h,/) with respect to h. With recursion rela-
tions for spherical harmonics [20], the function

N‘m(h) can be cast in the alternative form

N ‘mðhÞ ¼
1

‘ð‘þ 1Þ m2jY ‘mðh;/Þj2 þ
1

2
ð‘þ mÞ

�

� ð‘� mþ 1ÞjY ‘m�1ðh;/Þj2 þ
1

2
ð‘� mÞ

� ð‘þ mþ 1ÞjY ‘mþ1ðh;/Þj2
�
. ð28Þ

Therefore, both N‘m(h) and M‘m(h) are determined

by the absolute values of spherical harmonics.

These functions are independent of /, and from

the properties of spherical harmonics it also fol-

lows that these functions are independent of the

sign of m. These functions are listed in Appendix

A for ‘ = 1 and ‘ = 2. The dependence on the

dimensionless radial distance q between the multi-
pole and the field point enters through the function

A‘(q), which is a polynomial in 1/q2 with leading

term A‘ðqÞ ¼ 1þ Oðq�2Þ. The Poynting vector

Sg‘m(r) has a radial part, proportional to r̂, and a

term proportional to e/, indicating a rotation

around the z-axis. The sign of m only enters

through the factor m/q, and therefore this rotation

is positive or negative with the sign of m (the posi-
tive direction being the direction which follows

with the right-hand rule from the orientation of

the z-axis).

In general, the power passing through a surface

element of a sphere with radius r around the origin

and with solid angle dX is given by

dP g‘m ¼ Sg‘mðrÞ � r̂r2 dX. ð29Þ
For multipole radiation this becomes with Eq. (27)

dP g‘m

dX
¼ P 1N ‘mðhÞ; ð30Þ

which is the power per unit solid angle. We note

that the dependence on r cancels. The total emitted

power by the multipole is thenZ
dX

dP g‘m

dX
¼ P 1; ð31Þ

sinceZ
dXN ‘mðhÞ ¼ 1; ð32Þ

which in turn follows from the fact that the vector

spherical harmonics T‘‘m(h,/) are normalized on
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the unit sphere. Therefore, the parameter P1 is the

total power, and the function N‘m(h) is the normal-

ized power per unit solid angle.
4. Field lines of the Poynting vector

The term with e/ in Eq. (27) does not affect the

power per unit solid angle, but it does determine

the direction of energy flow out of the multipole.

To see this, we now determine the field lines of

the Poynting vector. Let r(u), with u a dummy

parameter, represent a field line. For any point
on such a line, the Poynting vector at that point

must be on the tangent line. Field lines are only

determined by the direction of Sg‘m(r) at r, and

therefore the vector field f(r)Sg‘m(r), with f(r) an

arbitrary positive function of r, has the same field

lines. Consequently, field lines are the solution of

the autonomous differential equation

dr

du
¼ f ðrÞSg‘mðrÞ. ð33Þ

With 1/(nk0) as the unit of length, a field point is

represented by the dimensionless vector q = nk0r.

A convenient choice for the function f(r) is

f ðrÞ ¼ r2

nk0P 1N ‘mðhÞ
. ð34Þ

With Eq. (27), the equation for the field lines then

becomes

dq

du
¼ q̂þ m

q
A‘ðqÞ

M ‘mðhÞ
N ‘mðhÞ

e/; ð35Þ

with q̂ ¼ r̂.

The spherical coordinates of q are (q,h,/), and
writing out Eq. (35) in terms of these coordinates

yields

dq
du

¼ 1; ð36Þ

q
dh
du

¼ 0; ð37Þ

q sin h
d/
du

¼ m
q
A‘ðqÞ

M ‘mðhÞ
N ‘mðhÞ

. ð38Þ

The simple form of the right-hand side of Eq. (36)

is a consequence of the choice of f(r). From this

equation it follows that we can set u = q, so that
q becomes the free parameter for a field line. The

zero on the right-hand side of Eq. (37) follows

from the fact that the Poynting vector has no eh
component, and the solution of this equation is

h = h0, a constant. Therefore, on a field line the an-
gle h is the same for every point, and this implies

that the field line lies on the cone h = h0. Since

h = h0 on a field line, we can set h = h0 in Eq.

(38). So when we can set

a ¼ M ‘mðh0Þ
sin h0N ‘mðh0Þ

; ð39Þ

which is a constant on a field line. Then Eq. (38)
becomes

d/
dq

¼ ma
q2

A‘ðqÞ; ð40Þ

with solution

/ðqÞ ¼ /0 � ma
Z 1

q

dt
t2
A‘ðtÞ. ð41Þ

Here, /0 is a constant, which equals /(q ! 1).

Eq. (41) is the parameter equation of a field line

of the Poynting vector (together with h = h0).
The function A‘(q) is a positive function of q, as

follows from its definition (25). For a dipole (‘ = 1)

and a quadrupole (‘ = 2) these functions are
explicitly

A1ðqÞ ¼1þ 1

q2
; ð42Þ

A2ðqÞ ¼1þ 3

q2
þ 9

q4
. ð43Þ

The integral in Eq. (41) is therefore a decreasing

function of q, which implies that /(q) increases

(decreases) with q for m positive (negative). A field

line of the Poynting vector is therefore a curve

which starts at the origin of coordinates (q = 0)
and which spirals around the z-axis while staying

on the cone h = h0. With increasing q, the distance

to the origin increases, and therefore the field line

spirals outward. The orientation of the field line is

positive and negative with the sign of m. For m = 0

the equation for the field line reduces to /(q) = /0,

and this corresponds to a straight field line which

runs radially outward. For q large, the coordinates
(h,/) of a point on the field line approach (h0,/0),

and in particular /(q) becomes approximately
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y
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Fig. 2. Enlargement of the field line in z > 0 from Fig. 1. Here

we see clearly that the field line lies on the cone h0 = p/4. The
arrow to the left (right) is behind (in front of) the �z-axis,
corresponding to a positive orientation of the spiraling field
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constant with increasing q. This means that for

large q the spiraling behavior disappears, and the

field line runs in the direction (h0,/0) up to infin-

ity. Figs. 1 and 2 show typical field lines. The vor-

tex structure extends for about a wavelength
around the site of the multipole, and for larger dis-

tances the field lines run approximately radially

outward.

The result (41) gives the field line of the Poyn-

ting vector for any multipole, and therefore the

resulting vortex shown in Figs. 1 and 2 is a uni-

versal feature of multipole radiation. The field

lines for electric and magnetic multipoles of the
same order are the same. The dependence on

the order (‘,m) enters through the function

A‘(q) and the parameter a, and this has no influ-

ence on the structure of the resulting vortex.

Only the explicit appearance of m on the right-

hand side of Eq. (41) has significance in that
5-

5

55-

y

z

Fig. 1. Illustration of two field lines for a dipole with m = 1. We

use dimensionless coordinates ð�x;�y;�zÞ, as in Section 6. Each

field line is determined by (h0,/0), and for the two lines shown

we took (h0,/0) = (p/4,p/2) and (h0,/0) = (3p/4,�p/2). The

parameter equations for field lines in Cartesian coordinates

are given by Eqs. (46)–(48), and in the figure the field lines are

projected onto the �y�z-plane. A field line spirals an infinite

number of times around the z-axis and the length of the

spiraling part is infinite.

line.
its sign determines the orientation of the field

line.
5. The z-axis

In most optical vortices the field lines of the

Poynting vector curl around a singular point
(two-dimensional problems) or a line (three dimen-

sional problems). At such a point or on such a line

the Poynting vector vanishes, and in the neighbor-

hood of the point or line the direction (or phase) of

the Poynting vector becomes undetermined.

For the multipole vortex, the field lines rotate

about the z-axis, and one would expect that this

makes the z-axis a singular line. We now show that
this is not necessarily the case. The dependence on

h enters the Poynting vector, Eq. (27), through the

functions N‘m(h) and M‘m(h), and these functions

are determined by Y‘m(h,/). The spherical har-

monics are proportional to ðsin hÞjmj. For a point

on the z-axis we have h = 0 or p, so we have

Y‘m(h,/) = 0 on the z-axis, unless m = 0. From

Eq. (23) we then observe that M‘m(h) = 0 on the
z-axis for m 6¼ 0. In Eq. (27), M‘m(h) is multiplied

by m, so mM‘m(h) vanishes on the z-axis for all m.
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Therefore, the expression for the Poynting vector

on the z-axis simplifies to

Sg‘mðrÞ ¼
P 1

r2
N ‘mðh ¼ 0 or pÞ̂r; ð44Þ

and r̂ ¼ sgnðzÞez. Now we consider the value of

N‘m(h) for h = 0 or p, and we look at expression

(28) for this purpose. Since Y‘m(h,/) is only non-

zero on the z-axis for m = 0 we see that N‘m(h)
can only be finite on the z-axis for m = ±1, and this
comes from either the second or the third term on

the right-hand side of Eq. (28). This yields

N‘ ± 1 = jY‘0j2/2, both for h = 0 and h = p. From
the known expressions for spherical harmonics

we furthermore have jY‘0j2 = (2‘ + 1)/4p on the

z-axis. Therefore we obtain

Sg‘�1ðrÞ ¼
P 1

r2
2‘þ 1

8p
r̂; ð45Þ

for the Poynting vector on the z-axis, whereas the

Poynting vector vanishes identically on the z-axis

for other values of m. This shows that for

m = ±1, the positive and negative sides of the z-
axis are field lines, on which the Poynting vector

is finite. In this case, the z-axis is not a singular line

in the usual sense.
2-

1-

0

1

2101-

x

y

Fig. 3. Shown is a field line in the �x�y-plane with /0 = 0 for a

dipole with m = 1. The parameter a, defined by Eq. (39), is

equal to a = 2, as follows from Eqs. (A.7) and (A.9). The dashed

line is the asymptote of the field line, and the figure illustrates

that the field line approaches the line �y ¼ �2, as predicted by

Eq. (52), rather than a line through the origin of coordinates.
6. Asymptotic limit of a field line

A field line is parametrized with the dimen-
sionless distance q between a point on the field

line and the origin of coordinates. The spheri-

cal-coordinate angles (h,/) of a point on the field

line are h = h0 and the function /(q) is given by

Eq. (41). We introduce the dimensionless Carte-

sian coordinates �x ¼ nk0x; �y ¼ nk0y and �z ¼ nk0z,
so that a field line is represented by the parameter

equations

�xðqÞ ¼q sin h0 cos/ðqÞ; ð46Þ
�yðqÞ ¼q sin h0 sin/ðqÞ; ð47Þ
�zðqÞ ¼q cos h0. ð48Þ

For q ! 1, the function /(q) approaches the

value /0, and with /(q) = /0 substituted into

Eqs. (46)–(48) these equations represent a line

through the origin of coordinates with angles

(h0,/0). It might therefore seem that a field line
with constants (h0,/0) approaches this line for

q large. We now show that this is not exactly

the case.

The function A‘(t) in Eq. (41) is to leading order

A‘ðtÞ ¼ 1þ Oðt�2Þ for t large. This gives

/ðqÞ ¼ /0 �
ma
q

þ O
1

q3

� �
. ð49Þ

With Eqs. (46) and (47) this yields

�xðqÞ ¼ sinh0ðqcos/0þmasin/0Þ½1þOðq�2Þ�; ð50Þ
�yðqÞ ¼ sinh0ðq sin/0 �macos/0Þ½1þOðq�2Þ�; ð51Þ

and the equation for �z is the same as Eq. (48). For

q large, the factors in square brackets vanish, and

the field line approaches the line (asymptote)

which is parametrized by �xðqÞ ¼ sin h0ðq cos/0þ
ma sin/0Þ; �yðqÞ ¼ sin h0ðq sin/0 � ma cos/0Þ and
�zðqÞ ¼ q cos h0. This is a straight line, but it does

not go through the origin of coordinates. For

q = 0 we have �zð0Þ ¼ 0, so the value q = 0 gives

the intersection of the asymptote with the �x�y-plane.
The �x and �y values of this point are �xð0Þ ¼ ma sin
h0 sin/0 and �yð0Þ ¼ �ma sin h0 cos/0. Therefore,
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for m 6¼ 0 (and h0 6¼ 0 or p), the asymptote does

not go through the origin of coordinates.

This effect is most easily illustrated by consider-

ing a field line in the �x�y-plane, for which h0 = p/2.
The equations for the asymptote become �xðqÞ ¼
q cos/0 þ ma sin/0; �yðqÞ ¼ q sin/0 � ma cos/0,

and upon eliminating q this is

�y ¼ �x tan/0 �
ma

cos/0

; ð52Þ

a line with �ma= cos/0 as �y-intercept. Fig. 3 shows
a field line for a dipole with m = 1 and for /0 = 0,

and the asymptote of this field line.
7. Conclusions

The Poynting vector for radiation emitted by a

multipole of arbitrary order (‘,m) has been ob-

tained, and the result is given by Eq. (27). Mag-

netic and electric multipoles have the same

Poynting vector. The vector field Sg‘m(r) has a

term proportional to r̂, which accounts for the ra-

dial outflow of energy, and the term is propor-

tional to N‘m(h), which equals the normalized
power per unit solid angle. The second term is

proportional to e/, and this term is responsible

for the rotation of the field lines around the z-axis.

This leads to a vortex structure, as illustrated by

the figures. The rotation is positive and negative

with the sign of m. For m = 0 the e/ component

in Sg‘m(r) vanishes, and the field lines are radially

outward. The parameter equation for the field
lines is given by Eq. (41), in combination with

Eqs. (46)–(48) for the Cartesian coordinates of a

point on a field line. Each field line is determined

by (h0,/0), which equal the asymptotic values of

the spherical coordinates (h,/) of a point on the

corresponding field line, but it was shown that

the field lines do not approach the line h = h0,
/ = /0 asymptotically. This feature is illustrated
in Fig. 3.
Appendix A

Eq. (6) defines the vector spherical harmonics

T‘‘0mðh;/Þ in terms of Clebsch–Gordan coeffi-
cients, spherical harmonics and spherical unit vec-

tors. The corresponding expressions in terms of

spherical-coordinate unit vectors were derived by

Hill [21], and here we list the result for reference.

The parameter ‘
0
can only have the values ‘ + 1,

‘ and ‘ � 1, for which the vector spherical har-

monics are

T‘‘þ1mðh;/Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð‘þ 1Þð2‘þ 1Þ
p im

sin h
e/ � ð‘þ 1Þr̂

� ��

� Y ‘mðh;/Þ þ eh
oY ‘m

oh

�
; ðA:1Þ

T‘‘mðh;/Þ ¼
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ð‘þ 1Þ
p �

m
sin h

ehY ‘mðh;/Þ:

þie/
oY ‘m

oh

�
; ðA:2Þ

T‘‘�1mðh;/Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ð2‘þ 1Þ
p im

sin h
e/ þ ‘r̂

� ��
Y ‘mðh;/Þ

þ eh
oY ‘m

oh

�
. ðA:3Þ

From these expressions we immediately see that

r̂ � T‘‘þ1mðh;/Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 1

2‘þ 1

r
Y ‘mðh;/Þ; ðA:4Þ

r̂ � T‘‘mðh;/Þ ¼ 0; ðA:5Þ

r̂ � T‘‘�1mðh;/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

‘

2‘þ 1

r
Y ‘mðh;/Þ. ðA:6Þ

Eq. (A.5) expresses that the vector field A1‘m(r) is

transverse (perpendicular to r̂) for all r.

The Poynting vector Sg‘m(r) depends on h
through the functions N‘m(h) and M‘m(h), given
by Eqs. (23) and (28) in terms of spherical harmon-

ics. For reference we list these functions here for a

dipole (‘ = 1) and a quadrupole (‘ = 2). For a di-

pole we have

N 1�1ðhÞ ¼
3

8p
1� 1

2
sin2h

� �
; ðA:7Þ

N 10ðhÞ ¼
3

8p
sin2h; ðA:8Þ

M1�1ðhÞ ¼
3

8p
sin h; ðA:9Þ

and for a quadrupole these functions are
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N 2�2ðhÞ ¼
5

16p
ð1� cos4hÞ; ðA:10Þ

N 2�1ðhÞ ¼
5

16p
ð1� 3cos2hþ 4cos4hÞ; ðA:11Þ

N 20ðhÞ ¼
15

32p
ðsin 2hÞ2; ðA:12Þ

M2�2ðhÞ ¼
15

32p
sin3h; ðA:13Þ

M2�1ðhÞ ¼
15

8p
sin hcos2h. ðA:14Þ

The functions M‘m(h) are not needed for m = 0,

since they are multiplied by m in Eq. (27).
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