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Abstract

Electromagnetic multipole radiation can have a highly directed peak in its angular intensity distribution when trans-

mitted through an interface (xy-plane) with a medium that has a higher index of refraction. We show that the possible

occurrence of such a peak depends on the order of the multipole. It is also shown that the peak intensity is determined

uniquely by the intensity of the multipole radiation in the xy-plane in the absence of the interface. This peak occurs at

the slightest difference in index of refraction of the two media, and when the indices of refraction are almost equal, the

peak appears just below the interface in the denser medium, and it has an intensity of four times the intensity in the

xy-plane of the unbounded multipole.
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1. Introduction

Magnetic or electric multipole radiation is a

spherical wave emanating from the location of

the multipole, and the radiation is characterized

by its order (‘,m). For ‘ = 1,2, . . . we have dipole,

quadrupole, . . . radiation, and given ‘, the possi-
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ble values of m are m = �‘,�‘ + 1, . . . ,‘ [1]. Mul-

tipole radiation has the typical dipole,

quadrupole, . . . angular intensity distribution,

depending on the order (‘,m). For a given ‘ and

m, this radiation pattern is the same for magnetic

and electric multipoles. Alternatively, multipole

radiation can be represented by an angular spec-
trum, which is a superposition of plane waves of

the form exp(ik Æ r) [2,3]. When the radiation is

monochromatic with angular frequency x, and

when the multipole is embedded in a medium with

index of refraction n1 (assumed to be positive),
ed.
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Fig. 1. Schematic illustration of a multipole located a distance

H above an interface between media with indices of refraction

n1 and n2. The circles represent the spherical multipole wave. In

an angular spectrum representation this radiation field is

resolved in plane waves that travel directly towards the detector

(de) and waves that are incident on the surface (inc). An

incident wave is reflected (r) and transmitted (t), as indicated by

the corresponding arrows. The angle of observation in z >H is

the polar angle h with the positive z-axis, and in z < 0 the

observation direction is expressed in the transmission angle ht
with the negative z-axis.
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then the wave number is k = n1x/c. The angu-

lar spectrum representation involves adopting a

preferred direction in space, and this direction

will be taken as the z-axis. The wave vector can

then be written as k = ki + kzez, where the vector
ki is in the xy-plane. This ki is the integration

variable of the representation, and its range

covers the entire xy-plane. For a given ki, the

z-component of the wave vector must then satisfy

the relation k2z ¼ ðn1x=cÞ2 � k2k, which only leaves

the sign of kz to be determined. In exp(ik Æ r), the
vector r is the field point. For ki < n1x/c, kz is real,
and we take kz positive (negative) for z > 0 (z < 0).
The partial wave exp(ik Æ r) then travels away from

the xy-plane at both sides. On the other hand, for

ki > n1x/c, kz is imaginary, and we shall take kz as

positive (negative) imaginary for z > 0 (z < 0).

These are the evanescent waves of the angular

spectrum, and they decay away from the xy-plane

at both sides, while traveling along the xy-plane

with wave vector ki.
Of particular interest is the situation where the

multipole, assumed to be of atomic dimensions,

is located a distance H above an interface with a

medium with index of refraction n2, as shown sche-

matically in Fig. 1. The radiation reflects and re-

fracts at the interface, thereby modifying the

radiation pattern. The angular spectrum represen-

tation with partial waves of the form exp(ik Æ r),
accounts for the field of a multipole located at

the origin of coordinates. An advantage of the

angular spectrum is that the location of the multi-

pole can easily be shifted. When the multipole is

located on the z-axis we simply replace exp(ik Æ r)
by exp[ik Æ (r � Hez)] in the representation. Effec-

tively, the xy-plane becomes the plane z = H, and

the partial waves now travel or decay away from
the plane z = H. As indicated in Fig. 1, the waves

in z > H travel away from the interface and to

the far field where they can be observed with a

detector. We shall call these the directly emitted

(de) waves. Clearly, only the traveling waves of

the angular spectrum will contribute to the radia-

tion pattern, since the evanescent waves in z > H

die out in the z-direction on a length scale of about
a wavelength. The partial waves in 0 < z < H serve

as the incident (inc) waves, giving rise to the

reflected (r) and transmitted (t) waves at the
interface. In z > H, both the de- and the r-waves

travel towards the detector, giving rise to

interference.

Each incident wave from the angular spectrum

of the multipole gives also rise to a transmitted

wave in the medium with index of refraction n2 (as-

sumed positive). If we indicate by hi the angle of
incidence and by ht the angle of transmission, then

Snell�s law gives n1 sinhi = n2 sinht provided that

this equation has a solution ht. If n2 < n1, there ex-

ists a critical angle of incidence hc for which the

angle of transmission becomes ht = p/2:

sin hc ¼
n2
n1

: ð1Þ

When the angle of incidence exceeds the critical

angle, the transmitted wave is an evanescent wave,

which will not contribute to the far-field intensity

in z < 0. On the other hand, for n2 > n1 there exists
an angle of transmission ht for which the corre-

sponding angle of incidence approaches p/2. We

call this the anti-critical angle hac, which is given

by [4]
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sin hac ¼
n1
n2

: ð2Þ

Any incident traveling wave with 0 6 hi < p/2 is

transmitted in the cone 0 6 ht < hac. However,

the angular spectrum of the radiation emitted by

the multipole also contains evanescent waves

which can be converted into traveling waves at
the interface. The equivalent of Snell�s law be-

comes that both the incident and the transmitted

wave have the same ki. Any radiation detected in

the far field outside the cone 0 6 ht < hac has its

origin in evanescent waves from the source. Since

these waves emanate from the plane z = H and de-

cay in the direction towards the surface, they will

only yield a substantial contribution to the field
in hac < ht < p/2 if the distance H between the mul-

tipole and the surface is about a wavelength or

less.

It has long been recognized that for the prob-

lem of reflection and refraction of radiation by a

plane interface from a localized source the angu-

lar spectrum representation is superbly suited

since the reflection and transmission of each par-
tial wave is simply accounted for by the appropri-

ate Fresnel coefficients for reflection and

transmission of a plane wave [5]. This method

has been applied to obtain the radiation pattern

of an electric dipole near an interface [6–8],

although other approaches have yielded similar

results [9,10]. The predictions have been con-

firmed experimentally [11,12], including the exis-
tence of the anti-critical angle. The applicability

of the method, however, hinges on the availability

of an angular spectrum representation of the

source field, since this field is the incident field

on the interface. An angular spectrum representa-

tion of the multipole fields was derived by Deva-

ney and Wolf [13,14], based on a theorem due to

Erdélyi [15]. Recently, we have obtained an alter-
native angular spectrum representation [16],

which is more appropriate for the reflection and

transmission problem, and with this result we

have evaluated the radiation pattern of a multi-

pole near an interface [17]. In this communica-

tion, we show that the transmitted multipole

field can be highly directed along the anti-critical

angle, and we derive a criterion for the occur-
rence of this effect.
2. Intensity distribution

We consider the situation of Fig. 1 with the

multipole located a distance H above the interface

and embedded in a medium with index of refrac-
tion n1. The power per unit solid angle will be

normalized as

dP
dX

¼ P 1N‘mðr̂; aÞ; ð3Þ

with P1 the power emitted by the multipole in

medium n1, but without any boundaries, and

a = m and a = e for a magnetic and an electric

multipole, respectively. The normalized intensity

distribution N‘mðr̂; aÞ depends on the direction

of observation r̂, but due to symmetry it only de-

pends on the polar angle h in z > H or the angle

of transmission ht in z < 0. It is also independent
of the sign of m, so we shall consider m P 0 only.

The intensity distribution in z > H for a

magnetic multipole is given by [17]

N‘mðr̂;mÞ ¼ j1þ ð�1Þ‘þmRpe
2in1h cos hj2f‘mðcos hÞ

þ j1� ð�1Þ‘þmRse
2in1h cos hj2g‘mðcos hÞ:

ð4Þ

Here, Rp and Rs are the Fresnel reflection coeffi-
cients for p- and s-polarized plane waves, respec-

tively, and h = Hx/c is the dimensionless distance

between the multipole and the interface. The terms

‘‘1’’ inside the absolute value signs represent the

de-waves, and the factors exp(2in1hcosh) multiply-

ing the Fresnel coefficients account for the

difference in travel distance (retardation) of the

r-waves with respect to the de-waves. The intensity
distribution for an electric multipole is also given

by Eq. (4), but the Fresnel coefficients Rp and Rs

have to be exchanged. The functions f‘m(f) and

g‘m(f) are defined in Appendix A. Without the

interface we have Rp = Rs = 0 and Eq. (4) becomes

N‘mðr̂; aÞ ¼ f‘mðcos hÞ þ g‘mðcos hÞ; ð5Þ

both for a = m and a = e, and therefore

f‘mðcos hÞ þ g‘mðcos hÞ represents the intensity dis-

tribution of an (‘,m) multipole in unbounded space

(also for z < 0, see below). This far-field distribu-

tion is independent of the height H. The appear-

ance of two functions f‘m and g‘m comes from
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the splitting into p- and s-polarized waves. These

functions are independent of the index of refrac-

tion n1 and are the same for magnetic and electric

multipoles of the same order (‘,m). The Fresnel

coefficients are explicitly

Rp ¼
cos h� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2sin2h

p
cos hþ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2sin2h

p ; ð6Þ

Rs ¼
r cos h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2sin2h

p
r cos hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2sin2h

p ; ð7Þ

in terms of the parameter

r ¼ n1
n2

: ð8Þ

The intensity distribution in z < 0 for a mag-

netic multipole is

N‘mðr̂;mÞ ¼ 1

r
e2n1hImw½jT̂ pj2f‘mðwÞ þ jT̂ sj2g‘mðwÞ�;

ð9Þ
and for an electric multipole we exchange the Fres-

nel transmission coefficients T̂ p and T̂ s. The

parameter w appearing as the arguments of the

functions f‘m and g‘m is defined as

w ¼ � 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � sin2ht

q
; ð10Þ

with the understanding that the square root is ta-
ken as positive imaginary if sinht > r. In view of

Eq. (2), this happens when ht > hac, and this is only

possible in the situation where n2 is larger than n1.

Therefore, an imaginary w corresponds to an eva-

nescent incident wave, given the traveling wave at

angle ht. From Snell�s law, n1 sinhi = n2 sinht , we
see that w = �coshi if the incident wave is travel-

ing. If the incident wave is evanescent then there
is no angle associated with the parameter w.

The overall factor exp(2n1hImw) is equal to

unity if w is real, corresponding to a traveling inci-

dent wave. In this case, the angle of transmission is

in the range 0 6 ht < hac if n2 > n1 or 0 6 ht < p/2 if

n2 < n1, and there is no dependence on H in the

radiation pattern. On the other hand, for an eva-

nescent wave Imw is negative, and this exponential
factor decreases rapidly with the dimensionless dis-

tance h between the multipole and the surface.
This occurs for ht > hac (n2 > n1), indicating that

no radiation will be transmitted into the region

hac < ht < p/2 if H is sufficiently large.

The Fresnel coefficients T̂ p and T̂ s for a plane

wave are modified transmission coefficients (indi-
cated by the caret) to include the change in solid

angle upon transmission, and they are explicitly

T̂ p ¼
2 cos ht

r cos ht � w
; ð11Þ

T̂ s ¼
2 cos ht

cos ht � rw
: ð12Þ

For n2 = n1 we have r = 1. Then w = �cosht and
this is w = cosh since h > p/2. We then also have

T̂ p ¼ T̂ s ¼ 1, and Eq. (9) reduces to Eq. (5).
3. Onset of the radiation pattern near the interface

The far-field intensity distribution of a multi-

pole in an unbounded medium (r = 1) is given by

Eq. (5), and the functions f‘m and g‘m can be ob-

tained from the expressions given in Appendix A.

To be specific, for a dipole they are

f11ðfÞ ¼
3

16p
; g11ðfÞ ¼

3

16p
jfj2; ð13Þ

f10ðfÞ ¼ 0; g10ðfÞ ¼
3

8p
j1� f2j; ð14Þ

and for a quadrupole we have

f22ðfÞ ¼
5

16p
j1� f2j; g22ðfÞ ¼

5

16p
j1� f2jjfj2;

ð15Þ

f21ðfÞ ¼
5

16p
jfj2; g21ðfÞ ¼

5

16p
j2f2 � 1j2; ð16Þ

f20ðfÞ ¼ 0; g20ðfÞ ¼
15

8p
j1� f2jjfj2: ð17Þ

In particular, for a field point in the xy-plane we

have cosh = 0, and the intensity is

N‘mðr̂; aÞ ¼ f‘mð0Þ þ g‘mð0Þ: ð18Þ
Let us first consider the transmitted field. If we

set ht = p/2 in Eqs. (11) and (12) we find
T̂ p ¼ T̂ s ¼ 0 for all r 6¼ 1, and therefore



Fig. 2. Polar diagram of the radiation pattern of an electric

quadrupole with m = 1. The vertical axis is the z-axis and the

dotted line is the xy-plane. The intensity distribution is

rotationally symmetric around the z-axis. The thin line is the

radiation pattern for the quadrupole in unbounded space, and

the thick line is for n1 = 1 and n2 = 1.0025. The value of r is

0.9975 and the anti-critical angle is 86�. The diagram illustrates

that for r[ 1, the intensity in the xy-plane vanishes, and that a

peak appears just below the xy-plane. The peak value equals

four times the value of the intensity in the xy-plane for the

multipole in an unbounded medium. The parameter h was

taken as 2p, but the observed effect here is independent of h.
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N‘mð̂r; aÞ ¼ 0; ð19Þ
in the xy-plane. This shows that for all r 6¼ 1 the
intensity in the xy-plane vanishes, whereas for

r = 1 it is given by the right-hand side of Eq.

(18). Apparently, the intensity jumps from some

value (possibly zero) to zero at the slightest devia-

tion of r from unity.

Most interesting is the case n2 > n1, so that

0 < r < 1. Then there exists an anti-critical trans-

mission angle hac, given by Eq. (2), and we have

sinhac = r. At ht = hac we find w = 0 from Eq.

(10), and this yields for the transmission

coefficients

T̂ p ¼
2

r
; T̂ s ¼ 2: ð20Þ

From Eq. (9) we then obtain

N‘mð̂r;mÞ ¼ 4

r3
½f‘mð0Þ þ r2g‘mð0Þ� ðht ¼ hacÞ

ð21Þ
and for an electric multipole we switch f‘m(0) and

g‘m(0).

If we now consider r[ 1, we have sinhac [ 1

and therefore hac [ p/2. From Eq. (21) we then

find

N‘mð̂r; aÞ � 4½f‘mð0Þ þ g‘mð0Þ�; ð22Þ
for the intensity at angle ht = hac just below the xy-

plane. This result also holds for an electric multi-

pole since exchanging f‘m(0) and g‘m(0) in Eq.

(22) has no effect. On the other hand, for r = 1

the intensity in the xy-plane is given by Eq. (18),
and we see that there is a difference of a factor

of four. The conclusion is that for r = 1, the inten-

sity in the xy-plane has some given value, given by

the right-hand side of Eq. (18). Then for the slight-

est decrease in r, the intensity in the xy-plane drops

to zero, and the value of the intensity just below

the xy-plane increases by a factor of four. This

holds for any multipole, and is independent of
the details of the functions f‘m and g‘m. Fig. 2

shows the appearance of this peak just below the

xy-plane for the case of an electric quadrupole

with m = 1. For increasing r, such a peak does

not appear.

The radiation pattern in z > H is given by Eq.

(4). For a field point in (near) the xy-plane we have
h = p/2, and from Eqs. (6) and (7) we find

Rp = Rs = �1 for all r 6¼ 1. Eq. (4) reduces to

N‘mðr̂;mÞ ¼
4f ‘mð0Þ; ‘þ m odd;

4g‘mð0Þ; ‘þ m even:

�
ð23Þ

The same holds for an electric multipole, since

exchanging Rp and Rs has no effect (both equal

to �1). It is shown in Appendix A that the func-

tions f‘m and g‘m have the property

f‘mð0Þ ¼ 0; ‘þ m odd; ð24Þ

g‘mð0Þ ¼ 0; ‘þ m even; ð25Þ
and therefore we find N‘mð̂r; aÞ ¼ 0. So, just like

for the transmitted field, the intensity in the xy-

plane drops from the value given by the right-hand

side of Eq. (18) to zero.

For the field in z > H we consider first the case
n2 < n1, for which r > 1. Then there exists a critical

angle of incidence hc, given by Eq. (1), which can

be expressed as sinhc = 1/r. When we set the angle

of observation h equal to hc (angle of incidence

equals the angle of reflection), then 1 � r2 sin2h = 0
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and the Fresnel reflection coefficients are found to

be Rp = Rs = 1 from Eqs. (6) and (7). If we subse-

quently let h ! p/2, and thereby r! 1, since

sinh = sin hc = 1/r, Eq. (4) becomes

N‘mð̂r; aÞ �
4f ‘mð0Þ; ‘þ m even;

4g‘mð0Þ; ‘þ m odd:

�
ð26Þ

The result also holds for a = e, since exchanging

Rp and Rs has no effect in this limit. With Eqs.

(24) and (25) this can also be written as

N‘mðr̂; aÞ � 4½f‘mð0Þ þ g‘mð0Þ�; ð27Þ
since the added term is zero. This value for

N‘mðr̂; aÞ just above the xy-plane is four times

the value for the unbounded multipole in the xy-

plane. Fig. 3 shows this effect for an m = 1 quadru-

pole. Interesting to notice is that this behavior
holds for any multipole, and is independent of

the distance H between the surface and the multi-

pole. The figure also shows that in this case of

n2 < n1 there is no peak in z < 0, and Fig. 2 shows

that for n2 > n1 there is no peak in z > H.
4. Highly directed transmission

For n2 J n1 a sharp peak appears just below

the xy-plane, as shown in Fig. 2. We now consider
Fig. 3. Polar diagram of the radiation pattern for an m = 1

quadrupole for the same parameters as in Fig. 2, but with the

indices of refraction n1 and n2 exchanged. The peak now

appears above the xy-plane, and again with four times the value

of the intensity in the xy-plane for an unbounded medium. The

critical angle is 86� and r = 1.0025.
what happens to this peak when the value of n2 in-

creases. The intensity distribution for z < 0 is given

by Eq. (9). The dependence on the transmission

angle ht comes in through the overall exponential,

the Fresnel coefficients and the functions f‘m(w)
and g‘m(w), with the argument w given by Eq.

(10). The functions f‘m and g‘m are smooth func-

tions of their arguments, as can be seen from

Eqs. (13)–(17) for dipoles and quadrupoles. The

effect of the exponential is that the intensity in

the region hac < ht < p/2 will become negligible if

the distance between the multipole and the inter-

face is about a wavelength or more. The Fresnel
transmission coefficients enter as jT̂ pj2 and jT̂ sj2,
and it follows from Eqs. (11) and (12) that jT̂ pj2
and jT̂ sj2 have a maximum at w = 0, which is at

ht = hac. From Eq. (20) we see that the peak values

are jT̂ pj2 ¼ 4=r2 and jT̂ sj2 ¼ 4. Figs. 4 and 5 show

jT̂ pj2 and jT̂ sj2, respectively, as a function of ht
and for three values of r. For n1 = 1 and

n2 = 2.92 the value of r is 0.342, and this given a
peak of jT̂ pj2 ¼ 34, as shown in Fig. 4. Evidently,

jT̂ pj2 has a strong peak at ht = hac, and this leads

to a strong peak at the anti-critical angle in the

intensity distribution. Fig. 6 illustrates the strong

peak at ht = hac for an electric quadrupole with

m = 1, and for n1 = 1 and n2 = 1.22 (r = 0.82). Al-

ready for this very moderate value of n2 there is

a highly directed transmission near the anti-critical
Fig. 4. Graphs of jT̂ pj2 versus the angle of transmission ht.
Curves (a), (b) and (c) correspond to r = 0.940, 0.707 and 0.342,

respectively. The peaks appear at the anti-critical angles, which

are, respectively, 70�, 45�, and 20�. The heights of the peaks are
given by jT̂ pj2 ¼ 4=r2, and as indicated the height for hac = 20�
is 34.



Fig. 5. Graphs of jT̂ sj2 versus the angle of transmission ht for
the same parameters as in Fig. 4. The peaks here also appear at

the anti-critical angles, but the peak height is jT̂ sj2 ¼ 4 for all r.

Fig. 6. Polar diagram of the intensity distribution for an

electric quadrupole with m = 1 The parameters are the same as

in Fig. 2, except that n2 = 1.22. The value of r is 0.82 and the

anti-critical angle is hac = 55�. The figure illustrates the emerg-

ing of the highly directed peak at hac with decreasing value of r.

Fig. 7. Same as Fig. 6, but with n2 = 2.45. Here, r = 0.408 and

hac = 24�. The peak value of the intensity at hac is 5.8.
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angle. In Fig. 7 we have n2 = 2.45 (r = 0.408),

with all other parameters the same as in Fig. 6.

The peak height at ht = hac is given by Eq. (21)

with f‘m and g‘m exchanged. From Eq. (16)

we have for the m = 1 quadrupole f21(0) = 0,

g21(0) = 5/(16p), which gives a peak height of

5/(4pr3) = 5.8.
5. Conditions for highly directed transmission

For an unbounded medium, the value of the

intensity in the xy-plane is given by Eq. (18), and

for 0 < r < 1 the value of the intensity at the anti-
critical angle is given by Eq. (21). We notice that

the arguments of the functions f‘m(f) and g‘m(f)
are f = 0 in both expressions. The highly directed

peak is a result of the overall factor 1/r3 in Eq.
(21), which comes from the value of jT̂ pj2 at

ht = hac and the factor 1/r in Eq. (9). However,

from Eq. (24) we see that f‘m(0) = 0 for ‘ + m

odd. In that case, Eq. (21) reduces to

N‘mðr̂;mÞ ¼ 4g‘mð0Þ=r, and the term responsible

for the highly directed peak has disappeared. In

other words, the strong peak in jT̂ pj2 is multiplied

by a factor which is identically zero. The remain-
ing term comes from jT̂ sj2, which still has a peak

at ht = hac, but the peak is much weaker.

Let us consider ‘ + m even, so that g‘m(0) = 0.

For both a magnetic and an electric multipole in

an unbounded medium we have in the xy-plane

N‘mðr̂; aÞ ¼ f‘mð0Þ: ð28Þ
For 0 < r < 1 the values at the anti-critical angle

are

N‘mðr̂;mÞ ¼ 4

r3
f‘mð0Þ; ð29Þ

N‘mðr̂; eÞ ¼
4

r
f‘mð0Þ: ð30Þ

For r ! 1 we have hac ! p/2, and both expressions

approach N‘mðr̂; aÞ � 4f ‘mð0Þ. For decreasing r,

hac decreases since sinhac = r, and the values at

the peak for the magnetic and electric multipole

start to differ. From Eq. (29) we see that the peak

value for a magnetic multipole is 4/r3 times the



Fig. 8. Polar diagram of the intensity distribution of an electric

quadrupole for the same parameters as in Fig. 7, but with

m = 2. In this case there is no highly directed peak at hac
(indicated by the dashed line), but a weak peak.

Fig. 9. Polar diagram of the intensity distribution of an electric

quadrupole for the same parameters as in Fig. 7, but with

m = 0. For this case of ‘ = 2, m = 0, the intensity at the anti-

critical angle vanishes. The selection rule predicts no strong

peak, but also the weak peak disappears because of f20(0) = 0.
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value in the xy-plane for the unbounded multipole,

and this gives rise to the highly directed peak at

ht = hac. The peak value for the electric multipole

is 4/r times the value in the xy-plane for the un-

bounded multipole, and this corresponds to a
weak peak. This also shows that the peak value,

both for a strong and a weak peak, is uniquely

determined by the value f‘m(0) of the intensity in

the xy-plane for an unbounded multipole. Then,

it is shown in Appendix A that

f‘0ð0Þ ¼ 0: ð31Þ

This implies that for m = 0 both the weak and the

strong peak vanish, and we have N‘mðr̂; aÞ ¼ 0 at

ht = hac. This can be seen as a result of the fact that

for m = 0 the intensity in the xy-plane for the un-

bounded multipole also vanishes, so when multi-

plied by 4/r3 for the strong peak or by 4/r for the

weak peak, it remains zero. So, for ‘ + m even,

the magnetic multipole has a strong peak and the
electric multipole has a weak peak, unless m = 0

(and therefore ‘ even), in which case

N‘mðr̂; aÞ ¼ 0 at ht = hac. It is shown in Appendix

A that no other ‘‘accidental’’ zeros of f‘m(0) occur,

other than the one given by Eq. (31). For ‘ + m

odd we have f‘m(0) = 0, and the same consider-

ations hold with the roles of the magnetic and elec-

tric multipoles exchanged. An ‘‘accidental’’ zero as
in Eq. (31) does not occur for g‘m(0), as proved in

Appendix A. Therefore, for ‘ + m odd the electric

multipole has a strong peak and the magnetic mul-

tipole has a weak peak. We summarize these con-

siderations as follows: For n2 > n1 there is a highly

directed transmission peak at ht = hac if ‘ + m

even, but m 6¼ 0, for a magnetic multipole and

for ‘ + m odd for an electric multipole. If there is
no highly directed peak, then there is a weak peak,

unless ‘ even and m = 0, in which case the intensi-

ties of both the magnetic and electric multipoles

are zero at the anti-critical angle.

For a dipole we have ‘ = 1, and therefore an

m = 1 magnetic dipole and an m = 0 electric dipole

have a highly directed peak, whereas the m = 0

magnetic dipole and the m = 1 electric dipole have
a weak peak. For a dipole it is not possible to have

N1mðr̂; aÞ ¼ 0 at ht = hac.
For an electric quadrupole (‘ = 2), we have a

highly directed peak for m = 1, as is illustrated in
Fig. 7. For m = 2 we then expect a weak peak,

and this is shown in Fig. 8. The radiation is still

mainly directed along the anti-critical angle, but

the intensity is more than a factor of five lower

than for the case m = 1. For m = 0, we have
N20ð̂r; eÞ ¼ 0 at ht = hac, since ‘ is even, and this

is illustrated in Fig. 9. For a magnetic quadrupole

we have a highly directed peak for m = 2, a weak

peak for m = 1 and N20ð̂r;mÞ ¼ 0 at ht = hac.



Fig. 10. Intensity distribution for an electric quadrupole for the

same parameters as in Fig. 7, but with h = 0. The large lobe that

appears at ht > hac comes from evanescent multipole waves

which are converted into traveling waves at the interface.
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In order to put the value of the highly directed

peak to scale we consider an observation point on

the negative z-axis, e.g., ht = 0. From Eq. (10) we

have w = �1, and from Eqs. (11) and (12) we

obtain

T̂ p ¼ T̂ s ¼
2

1þ r
: ð32Þ

The intensity on the z-axis then becomes with Eq.

(9)

N‘mð̂r; aÞ ¼
4

rð1þ rÞ2
½f‘mð�1Þ þ g‘mð�1Þ�; ð33Þ

both for a magnetic and an electric multipole, and
independent of the distance H. For r = 1 this is

N‘mð̂r; aÞ ¼ f‘mð�1Þ þ g‘mð�1Þ. Therefore, the

intensity at ht = 0 in the presence of the interface

equals 4/[r(1 + r2)] times the value for the intensity

without the interface. On the other hand, the value

of the highly directed peak is 4/r3 times the value of

the intensity in the xy-plane for the multipole in an

unbounded medium, and for the weak peak this
multiplication factor was 4/r. For r sufficiently

small we have 4/[r(1 + r2)] � 4/r, showing that the

value on the z-axis grows at about the same rate

with decreasing r as the weak peak. The highly di-

rected peak is a factor of 1/r2 larger than a corre-

sponding weak peak and, in order of magnitude,

than the value of the intensity at ht = 0. For the

case of Fig. 7 we have 1/r2 = 6, which expresses
that the highly directed peak is about six times

as strong as the transmitted intensity at other

angles.

In the examples above, the dimensionless dis-

tance h between the multipole and the interface

was taken as h = 2p, corresponding to one wave-

length. For this distance, the evanescent waves

emanating from the multipole do not reach the
surface with sufficient amplitude to contribute to

the intensity in z < 0. Evanescent waves that do

reach the surface can be converted into traveling

waves, provided they have the correct value of

ki, and these traveling waves are observable in

the region hac < ht < p/2. For Fig. 10 we have set

h = 0, and we see the appearance of a large lobe

for ht > hac. This lobe is entirely due to evanescent
multipole waves, and we conclude that if the dis-

tance h is very small, the highly directed peak,
although still present, is obscured by the dominat-

ing intensity that has its origin in evanescent

waves. It was shown in [18] that for electric dipole

radiation under certain circumstances almost all
transmitted power could be attributed to evanes-

cent waves.
6. Intensity distribution in z > H

For n1 J n2 a highly directed peak appears just

above the xy-plane with a peak intensity of four
times the value in the xy-plane for an unbounded

multipole, as shown in Fig. 3. This onset of the

radiation pattern is the same as for the transmitted

waves in the case n2 [ n1. For the transmitted

waves, the strong peak came from the fact that

the Fresnel transmission coefficient for p-waves

grows as 2/r at the anti-critical angle. For the re-

flected field, however, we have Rp = Rs = 1 at hc
for all r > 1, and hence there is no growing of

the peak value in the intensity at h = hc. For

h < hc we see from Eqs. (6) and (7) that |Rr| < 1,

r = s,p, and for h > hc the square root is positive

imaginary so that |Rr| = 1. For the factors multi-

plying the functions f‘mðcos hÞ and g‘mðcos hÞ in

Eq. (4) we then have

j1� ð�1Þ‘þmRre
2in1h cos hj2 6 4; ð34Þ



Fig. 11. Radiation pattern of an electric quadrupole with

m = 1. The parameters are h = 2p, n1 = 1.22, n2 = 1, for which

the critical angle is hc = 55�. The figure illustrates that there is a
peak at the critical angle, but that the main peak, the lobe at the

large angle, comes from interference between reflected and

directly emitted waves.

54 H.F. Arnoldus, J.T. Foley / Optics Communications 246 (2005) 45–56
and therefore the intensity in z > H is at most four

times the value of the intensity for an unbounded

multipole at the same angle h.
Another difference with the transmitted field is

that for z > H we have interference between the re-
flected waves and the directly emitted waves. Fig.

11 shows that there still is a peak in the intensity

distribution at the critical angle, but the large lobe
Fig. 12. Intensity distribution for an m = 1 electric quadrupole

with h = 2p, n1 = 2.45 and n2 = 1. The critical angle is 24�. The
figure shows the lobe structure in z >H resulting from

interference, and it also shows that there is no peak anymore

at hc.
at the larger angle is a result of interference, and

this dominates the radiation pattern. Fig. 12 illus-

trates that for a smaller hc there is no peak any-

more at hc, and the main feature of the intensity

distribution is the interference structure.
7. Conclusions

Multipole radiation is shown to possibly have a

highly directed peak in its angular intensity distri-

bution when transmitted through an interface.

When r = n1/n2 < 1, there exists an anti-critical an-
gle hac, given bysinhac = r, and the possible peak is

directed along this angle. We have shown that the

possible occurrence of the peak depends on the or-

der (‘,m) of the multipole. A magnetic multipole

will exhibit this highly directed peak if ‘ + m is even,

but m 6¼ 0, and an electric multipole has this peak

when ‘ + m is odd. It is also shown that the peak

value is 4/r3 times the value of the intensity in the
xy-plane for an unbounded multipole. In particu-

lar, for r [ 1 this factor equals four and hac [
p/2, indicating that at the slightest deviation from

r = 1 this peak appears just below the xy-plane,

and has a magnitude of four times the value of the

intensity in the xy-plane at r = 1. For r J 1, this

peak appears just above the xy-plane, but with

increasing r the interference between the reflected
and directly emitted waves dominates the radiation

pattern.
Appendix A

The electromagnetic multipole fields are most

conveniently represented in terms of the vector
spherical harmonics Tj‘m(h,/) [19,20]. The evanes-

cent waves in an angular spectrum representation

have wave vectors with an imaginary z-compo-

nent, which necessitates that we generalize the def-

inition of the vector spherical harmonics [16]. We

only need the generalization of Tj‘m(h,/) with

j = ‘. We introduce

V‘mðf;/Þ ¼
X
l

ð‘m� l1lj‘mÞS‘;m�lðf;/Þel;

ðA:1Þ
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where f is complex, / is real, (‘m � l1l|‘m) is a

Clebsch–Gordan coefficient, the el (l = 1,0,�1)

are the spherical unit vectors, and

S‘mðf;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

4p
ð‘� mÞ!
ð‘þ mÞ!

s
Pm
‘ ðfÞeim/ ðA:2Þ

are generalized spherical harmonics. The functions

Pm
‘ ðfÞ are defined as

Pm
‘ ðfÞ ¼ ð�1Þmð1� f2Þm=2 dm

dfm
P ‘ðfÞ;m P 0; ðA:3Þ

with P‘(f) the Legendre polynomials, and for

m < 0 we set

P�m
‘ ðfÞ ¼ ð�1Þm ð‘� mÞ!

ð‘þ mÞ! P
m
‘ ðfÞ: ðA:4Þ

In Eq. (A.3) the branch cuts for (1 � f2)m/2 are

taken as (�1,�1) and (1,1). The standard asso-

ciated Legendre functions are defined by the
same formula as Eq. (A.3), but the branch cut

is taken as (�1,1). When we set f = cosh in the

formulas above, then we have S‘mðcos h;
/Þ ¼ Y ‘mðh;/Þ and V‘mðcos h;/Þ ¼ T‘‘mðh;/Þ,
which are the regular spherical harmonics and

vector spherical harmonics, respectively. The

functions f‘m(f) and g‘m(f), which determine the

intensity distribution of the multipole near an
interface, are defined as

f‘mðfÞ ¼
1

j1� f2j
jez � V‘mðf; 0Þj2; ðA:5Þ

g‘mðfÞ ¼ jey � V‘mðf; 0Þj2: ðA:6Þ
We now derive some properties of these func-

tions that are used in this paper. The spherical unit

vectors e1 and e�1 are in the xy-plane, so we have

from Eq. (A.1)

ez � V‘mðf;/Þ ¼ ð‘m10j‘mÞS‘mðf;/Þ; ðA:7Þ
with

ð‘m10j‘mÞ ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p : ðA:8Þ

Since this Clebsch–Gordan coefficient vanishes for

m = 0, we have

f‘0ðfÞ ¼ 0; ðA:9Þ
and this gives Eq. (31).
Of particular interest are the values of f‘m(f)
and g‘m(f) at f = 0. The Legendre polynomials

are odd and even with ‘, and with Eqs. (A.3) and

(A.4) this gives Pm
‘ ð�fÞ ¼ ð�1Þ‘þmPm

‘ ðfÞ. There-

fore, we have Pm
‘ ð0Þ ¼ 0 for ‘ + m odd. From Eq.

(A.2) we then find

S‘mð0; 0Þ ¼ 0; ‘þ m odd: ðA:10Þ
By using the explicit expressions for the Legendre

polynomials and differentiating m times, it also fol-

lows that Pm
‘ ð0Þ 6¼ 0 for ‘ + m even, and therefore

S‘m(0,0) 6¼ 0 for ‘ + m even. From Eqs. (A.5),
(A.7) and (A.8) we then conclude that f‘m(0) = 0

for ‘ + m odd and for m = 0, and f‘m(0) 6¼ 0

otherwise.

With ey � el ¼ �i=
ffiffiffi
2

p
for l = ±1 we have from

Eq. (A.1)

ey �V‘mðf;/Þ ¼ � iffiffiffi
2

p
X
l¼�1

ð‘m� l1lj‘mÞS‘;m�lðf;/Þ:

ðA:11Þ
The spherical harmonics satisfy a three-term

recursion relation connecting these functions with

three different values of m [21], and the same

relation holds for the generalized spherical har-
monics ðwith cos h ! fÞ. For f = 0 the relation re-

duces to a two-term relation, which can be

written asX
l¼�1

ð‘m� l1lj‘mÞleil/S‘;m�lð0;/Þ ¼ 0: ðA:12Þ

When we set / = 0 in Eq. (A.12) and f = 0, / = 0

in Eq. (A.11), then we see that the terms in both

summations are the same, except that there is an

additional l in Eq. (A.12). Therefore, for f = 0,

/ = 0, the two terms in Eq. (A.11) are equal, and

we obtain

ey � V‘mð0; 0Þ ¼ �i
ffiffiffi
2

p
ð‘mþ 11� 1j‘mÞS‘;mþ1ð0; 0Þ:

ðA:13Þ
Since S‘,m + 1(0,0) = 0 for ‘ + m even, we find from

Eq. (A.6) that g‘m(0) = 0 for ‘ + m even. The
Clebsch–Gordan coefficient is

ð‘mþ 11� 1j‘mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ mþ 1Þð‘� mÞ

2‘ð‘þ 1Þ

s
;

ðA:14Þ
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which vanishes only for m = ‘. This gives

g‘‘(0) = 0, but this situation is already covered

by g‘m(0) = 0 for ‘ + m even. From S‘,m + 1

(0,0) 6¼ 0 for ‘ + m odd (below Eq. (A.10)) we

conclude that g‘m(0) 6¼ 0 for ‘ + m odd. In other
words, g‘m(0) does not have an ‘‘accidental’’

zero for ‘ + m odd like f‘m(0) does for ‘ + m

even.
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