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Reflection and refraction of multipole radiation
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Reflection and refraction of electromagnetic multipole radiation by an interface is studied. The multipole can
be electric or magnetic and is of arbitrary order (dipole, quadrupole). From the angular spectrum represen-
tation of the radiation emitted by the multipole, I have obtained the angular spectrum representations of the
reflected and transmitted fields, which involve the Fresnel reflection and transmission coefficients. The in-
tensity distribution in the far field is evaluated with the method of stationary phase. The result is very simple
in appearance and can be expressed in terms of two auxiliary functions of a complex variable. By exchanging
the Fresnel coefficients for s and p polarization, the result for an electric multipole can be obtained from the
result for a magnetic multipole. © 2005 Optical Society of America
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1. INTRODUCTION
When a radiating atom is located near an interface, part
of the emitted field serves as the incident field, giving rise
to reflection and refraction. The reflected radiation, in
turn, interacts with the atom and modifies the time evo-
lution of the atomic density operator, leading to an en-
hanced or inhibited emission rate (or lifetime) as com-
pared with the emission rate without the presence of the
boundary. The influence of the interface on emission
rates has been studied extensively, both
experimentally1–8 and theoretically,9–11 and in particular
the dependence on the separation distance between the
atom and the surface of the medium. Also, the radiation
pattern (angular intensity distribution) is affected by the
reflection and transmission at the interface.12,13 Of par-
ticular interest is the transmitted light for the case when
the index of refraction of the substrate is larger than the
index of refraction of the embedding medium of the
source. Since the traveling waves emanating from the
source bend toward the normal upon refraction, there ex-
ists a transmission angle uac such that in the angular re-
gion uac , u t , p/2, where u t is the transmission angle,
there can be no radiation originating in traveling waves
from the source. Any radiation observed in this region
comes from evanescent waves that are converted into
traveling waves at the interface and then end up in the
far field. Observation of this light, which is sometimes
called forbidden light,14 opens the possibility of probing
the source on a subwavelength scale.15–22 The angle uac
is called the anticritical angle23 since it is the transmis-
sion angle at which the corresponding incident wave be-
comes evanescent, whereas the usual critical angle is the
angle of incidence at which the transmitted waves be-
comes evanescent.

Most radiation emitted by atoms and molecules is elec-
tric dipole radiation, and the radiation from a localized
source is in first approximation electric dipole radiation.
However, when an atomic transition is dipole forbidden,
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higher-order multipole radiation can be emitted. In this
paper I consider a source of radiation that emits a pure
multipole field, either electric or magnetic, and of arbi-
trary order (dipole, quadrupole). The source is located in
a medium with dielectric constant «1 , a distance H above
the xy plane, and located on the z axis. The region 2L
, z , 0 is a layer of material with dielectric constant

«2 , and the substrate z , 2L has dielectric constant «3 .
We shall assume that «1 is positive, but we do not impose
any restrictions on the values of «2 and «3 . For example,
a negative value for the real part of «3 models a metal
substrate. The corresponding indices of refraction are
defined as ni 5 A« i, i 5 1, 2, 3. Figure 1 illustrates the
situation.

2. MULTIPOLE FIELDS
We assume time-harmonic fields, oscillating with angular
frequency v, so that the electric field is represented as
E(r, t) 5 Re@E(r)exp(2ivt)# with E(r) the complex am-
plitude, and similarly for the magnetic field B(r, t). The
electric field of a pure (a, l, m) multipole, located at the
origin of coordinates, is proportional to the standard mul-
tipole vector potential Alm(r; a) according to24–26

E~r! 5
ik0

3

4p«0
blm~a!Alm~r; a!, (1)

with k0 5 v/c. The type of multipole is indicated by a
5 e for electric and a 5 m for magnetic. The possible
values of l are l 5 1 (dipole), l 5 2 (quadrupole),..., and
for each l the possible values of m are m 5 2l,2l
1 1,...,l. The constants blm(a) are the multipole coeffi-
cients, which are determined by the source (dipole mo-
ment, etc.), and they can be expressed in terms of the cur-
rent density of the source.27 The multipole vector
potential for a 5 m is given by

Alm~r; m ! 5 hl
~1 !~n1k0r !Tllm~u, f ! (2)
2005 Optical Society of America



Henk F. Arnoldus Vol. 22, No. 1 /January 2005 /J. Opt. Soc. Am. A 191
in spherical coordinates (r, u, f ). Here, hl
(1)(n1k0r) is a

spherical Hankel function, and Tllm(u, f ) is a vector
spherical harmonic, defined in general as

Tjlm~u, f ! 5 (
m8m

~lm81mu jm !Ylm8~u, f !em (3)

in terms of Clebsch–Gordan coefficients (lm81mu jm),
spherical harmonics Ylm8(u, f ), and spherical unit vec-
tors em . The multipole vector potential for a 5 e follows
from Alm(r; m) as

Alm~r; e ! 5 2
i

n1k0
¹ 3 Alm~r; m !. (4)

The magnetic field of a multipole is determined by a Max-
well equation according to

B~r! 5 2
i

v
¹ 3 E~r!. (5)

3. ANGULAR SPECTRUM
REPRESENTATION
The multipole fields from Section 2 are spherical waves
emanating from the multipole in r 5 0. Such a represen-
tation is not suitable for the study of reflection and refrac-
tion of this radiation by an interface. More appropriate
is the so-called angular spectrum representation, which is
a superposition of plane waves, each of which satisfies
Maxwell’s equations in a medium with index of refraction
n1 , but without any sources. An angular spectrum rep-
resentation of the multipole vector potentials can be
obtained28,29 with a theorem due to Erdélyi,30 derived for
the scalar multipole fields. The result for Alm(r; m) is

Alm~r, m ! 5
~2i !l

2pn1k0
E d2ki

1

b

3 exp~iK6 – r !Vlm~6cos ū, f̄ !. (6)

Fig. 1. Illustration of the multipole located on the z axis, a dis-
tance H above the xy plane, and embedded in a medium with di-
electric constant «1 . The layer has a thickness L and a dielec-
tric constant «2 . The substrate occupies the region z , 2L and
is made of a material with dielectric constant «3 . The circles
around the multipole schematically indicate that the emitted ra-
diation is a spherical wave. The arrows represent the wave vec-
tors of the traveling partial waves of the angular spectrum, and
the labels de, inc., r, and t indicate the directly emitted, incident,
reflected, and transmitted waves, respectively.
The integration variable ki is a vector in the xy plane.
Given ki , the parameter b is defined as

b 5 H ~n1
2k0

2 2 k i
2!1/2, k i , n1k0

i~k i
2 2 n1

2k0
2!1/2, k i . n1k0

. (7)

The wave vectors K6 are

K6 5 ki 6 bez , (8)

and the upper (lower) sign is to be taken for the field in
the region z . 0 (z , 0). The factors exp(iK6 – r) in the
integrand represent plane waves. From Eq. (7) we can
see that k i

2 1 b2 5 n1
2k0

2, and therefore these partial
waves of the angular spectrum satisfy the dispersion re-
lation for a medium with dielectric constant n1 . For k i

, n1k0 , parameter b is positive, and the wave travels in
the direction of K6 . Because of the 6 in Eq. (8), the z
component of K6 is positive and negative with z, and
therefore the wave travels in a direction away from the xy
plane on both sides, such that the parallel component ki is
the same for z . 0 and z , 0. For k i . n1k0 , parameter
b is positive imaginary, and the wave vector has an imagi-
nary z component. This corresponds to a plane wave de-
caying away from the xy plane on both sides (evanescent
wave) while still traveling in the ki direction along the xy
plane.

We now define cos ū as

cos ū 5
b

n1k0
, (9)

and from Eq. (7) we can see that this quantity is either
positive or positive imaginary. For k i , n1k0 , corre-
sponding to a traveling wave, the angle ū (taken as 0
< ū < p/2) is the angle between the wave vector K6 and
the z axis. This is the polar angle, measured from the
positive z axis, of K1 and K2 and makes an angle of ū
with the negative z axis. When k i . n1k0 , correspond-
ing to an evanescent wave, cos ū is imaginary and there is
no angle ū associated with this quantity. We then define
sin ū 5 (1 2 cos2 ū)1/2, which is larger than unity for an
evanescent wave. The magnitude of ki can then be writ-
ten as

k i 5 n1k0 sin ū, (10)

and we indicate the polar angle of ki in the xy plane by f̄.
The wave vector then becomes

K6 5 n1k0 sin ū~ex cos f̄ 1 ey sin f̄ ! 1 n1k0ez cos ū.
(11)

The function Vlm(6cos ū, f̄ ) in the integrand on the right-
hand side of Eq. (6) is a generalized vector spherical har-
monic, defined in Ref. 29. It is essentially the same func-
tion as Tllm(u, f ), when expressed as a function of cos u,
but it allows for possible complex values of the first argu-
ment. The essential difference is that in Eq. (2) for the
vector potential the function Tllm(u, f ) depends on the
spherical-coordinate angles (u, f) of the field point r,
whereas in Vlm(6cos ū, f̄ ) the variables are functions of
ki , and there is no relation to the coordinates of the field
point r.
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The angular spectrum representation of Alm(r; e) fol-
lows from Eqs. (4) and (6), and we obtain

Alm~r, e ! 5
~2i !l

2pn1k0
E d2ki

1

b

3 exp~iK6 – r!K̂6 3 Vlm~6cos ū, f̄ !,

(12)

with K̂6 5 K6 /(n1k0).

4. MULTIPOLE NEAR AN INTERFACE
The multipole fields from Section 2 are the fields radiated
by a multipole at the origin of coordinates. An advantage
of the angular spectrum representation, as given in Sec-
tion 3, is that it allows us to shift the location of the mul-
tipole in a simple way since the dependence on the field
point r enters only as exp(iK6 – r). As illustrated in Fig.
1, we consider a multipole located at Hez . Therefore in
the angular spectrum representation of the fields we have
only to replace exp(iK6 – r) by exp@iK6 • (r 2 Hez)#.
We then have iK6 • (2Hez) 5 7in1h cos ū, with h
5 k0H the dimensionless distance between the multipole

and the interface. From Eqs. (1) and (6) we then find for
the electric field of a magnetic multipole at Hez

Es~r! 5 2
~2i !l11k0

2

8p2«0n1

blm~m !E d2ki

1

b
exp~iK6 – r

7 in1h cos ū !Vlm~6cos ū, f̄ !, (13)

where the subscript s indicates that this is the source
field. Similarly, the source field for an electric multipole
is

Es~r! 5 2
~2i !l11k0

2

8p2«0n1

blm~e !

3 E d2ki

1

b
exp~iK6 – r

7 in1h cos ū !K̂6 3 Vlm~6cos ū, f̄ !. (14)

The upper and lowers signs now pertain to the fields in
z . H and z , H, respectively.

The fields with the upper signs will be referred to as
the directly emitted (de) waves, and the fields with the
lower signs as the incident (inc) fields. In the region 0
, z , H, the source field serves as the incident field on
the interface, and this gives rise to reflection and refrac-
tion. In z . H the electric field can be written as

E~r! 5 Ede~r! 1 Er~r!, (15)

where r indicates the reflected field. Inside the layer the
field has two contributions, as shown schematically in
Fig. 1, due to multiple reflections at both boundaries.
For z , 2L, there is only the transmitted (t) field.

5. POLARIZED WAVES
Since each partial wave of the angular spectrum is a so-
lution of Maxwell’s equations for a source-free region with
index of refraction n1 , we need only to consider the reflec-
tion and transmission of these plane waves. To use the
standard results in terms of Fresnel coefficients, we have
to decompose the partial waves in s- and p-polarized
waves.31–33 For a given ki , we define the s polarization
vector as

es6 5 k̂i 3 ez , (16)

with k̂i 5 ki /k i , and the subscript 6 is added for later
convenience. The p polarization vectors, related to the
wave vectors K̂6 , are defined as

ep6 5 K̂6 3 es , (17)

and these can be expressed as

ep6 5 6cos ūk̂i 2 sin ūez . (18)

For evanescent waves, the polarization vectors ep6 are
complex. The polarization vectors are normalized as
es6 – es6 5 1, s 5 s, p, and we have K̂6 – es6 5 0. The
generalized vector spherical harmonics have the property
[Eq. (76) of Ref. 29]

K̂6 – Vlm~6cos ū, f̄ ! 5 0, (19)

indicating that they have no K̂6 component, and therefore
we can write

Vlm~6cos ū, f̄ ! 5 (
s

es6@es6 – Vlm~6cos ū, f̄ !#.

(20)

Substitution into Eq. (13) yields the angular spectrum for
the electric field of a magnetic multipole as a super-
position of polarized plane waves of the form
es6 exp(iK6 – r). For the electric multipole we need to
take the cross product of Eq. (20) with K̂6 , which yields
terms with K̂6 3 es6 as polarization vectors. It can be
shown by inspection that the cross product can be moved
inside the square brackets in Eq. (20) as

K̂6 3 Vlm~6cos ū, f̄ ! 5 (
s

es6@~es6 3 K̂6!

• Vlm~6cos ū, f̄ !#, (21)

so that Eq. (14) also becomes a superposition of polarized
waves of the form es6 exp(iK6 – r). Comparison of Eqs.
(20) and (21) then shows that the electric field of an elec-
tric multipole follows from the electric field of a magnetic
multipole under the substitution es6 → es6 3 K̂6 for the
polarization vector preceding the generalized vector
spherical harmonic.

6. REFLECTION AND TRANSMISSION
Let us consider the field of the magnetic multipole first.
The directly emitted field is given by Eq. (13) with the up-
per sign, and when we substitute expansion (20) with the
upper sign we obtain explicitly
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Ede~r! 5 2
~2i !l11k0

2

8p2«0n1

blm~m !E d2ki

1

b

3 exp~iK1 – r 2 in1h cos ū !

3 (
s

es1@es1 – Vlm~cos ū, f̄ !#. (22)

The incident field is given by the same expression, but
with the lower signs, and therefore each incident wave is
proportional to es2 exp(iK2 – r). The corresponding re-
flected wave has wave vector K1 and polarization vector
es1 and is multiplied by the Fresnel reflection coefficient
Rs(a). These Fresnel coefficients depend only on the
wave vector through the dimensionless variable

a 5 k i /k0 5 n1 sin ū. (23)

The reflected field then becomes

Er~r! 5 2
~2i !l11k0

2

8p2«0n1

blm~m !E d2ki

1

b

3 exp~iK1 – r 1 in1h cos ū !

3 (
s

Rs~a!es1@es2 – Vlm~2cos ū, f̄ !#,

(24)

and the total field is E(r) 5 Ede(r) 1 Er(r).
The transmitted wave propagates in a medium with di-

electric constant «3 , and the wave vector kt , given ki , is
therefore

kt 5 ki 2 k0n3ez , (25)

in terms of the parameter

n3 5 ~«3 2 a2!1/2. (26)

Here it is understood that we take the principal value of
the square root on the right-hand side (cut just below the
negative real axis). The polarization vector for s polar-
ization is again given by Eq. (16), and for p polarization
we take

ept 5 2
1

n3
~n3k̂i 1 aez!. (27)

The transmitted field then becomes

E~r! 5 2
~2i !l11k0

2

8p2«0n1

blm~m !E d2ki

1

b

3 exp~ikt – r 1 in1h cos ū !

3 (
s

Ts~a!est@es2 – Vlm~2cos ū, f̄ !#, (28)

with Ts(a) the Fresnel transmission coefficients.
The expressions for the various parts of the field of an

electric multipole follow when we make the substitutions
es6 → es6 3 K̂6 in the factors in side square brackets in
Eqs. (22), (24), and (28) [and, of course, blm(m)
→ blm(e)]. The explicit forms of the Fresnel reflection
and transmission coefficients can be found in Appendix A
of Ref. 13.

7. ASYMPTOTIC APPROXIMATION
FOR z Ì H
In the previous sections we have derived angular spec-
trum representations for the electric fields emitted by
magnetic and electric multipoles near the interface and
the fields reflected and transmitted by the layer. The
corresponding magnetic fields can be obtained from Eq.
(5). Of particular interest are the fields in the radiation
zone (r → `), where they can be detected with a macro-
scopic device. We first consider the region z . H, where
the field is the sum of the directly emitted and reflected
field, and we first consider the magnetic multipole. An
asymptotic approximation to an angular spectrum can be
obtained with the method of stationary phase, in which it
is asserted that the main contribution to the integrals
over ki comes from the neighborhood of a stationary point
in the ki plane.34,35 Both the directly emitted and the re-
flected waves are waves with wave vectors K1 . The sta-
tionary phase approximation for a given observation di-
rection (u, f) then has the general form

E d2ki

1

b
exp~iK1 – r!g~ki! ' 2

2pi

r
exp~in1k0r !g~ki,1!

(29)

for an arbitrary function g(ki). The stationary point is

ki,1 5 n1k0 sin uer , (30)

with er 5 cos fex 1 sin fey the radial unit vector in the
xy plane.

Since ki 5 n1k0 sin ū(cos f̄ex 1 sin f̄ey), we see imme-
diately that in the stationary point ( ū, f̄ )1 5 (u, f ).
From Eq. (23) we find that a in the stationary point is
equal to n1 sin u, which we indicate by a1 , and with k̂i,1
5 er we find from Eq. (16) that (es6)1 5 2ef . For the p
polarization vectors we set ( ū)1 5 u and k̂i,1 5 er in Eq.
(18), which gives (ep1)1 5 eu and

~ep2!1 5 2cos uer 2 sin uez . (31)

Combining everything then yields the asymptotic ap-
proximation for the directly emitted and reflected fields of
the magnetic multipole:

Ede~r! '
~2i !lk0

2

4p«0n1r
blm~m !exp@in1~k0r 2 h cos u!#

3 $eu@eu – Vlm~cos u, f !#

1 ef@ef – Vlm~cos u, f !#%, (32)

Er~r! '
~2i !lk0

2

4p«0n1r
blm~m !exp@in1~k0r 1 h cos u!#

3 $2Rp~a1!eu@~cos uer 1 sin uez!

• Vlm~2cos u, f !#

1 Rs~a1!ef@ef – Vlm~2cos u, f !#%. (33)
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The directly emitted field has an overall factor of
exp(2in1h cos u) whereas the reflected field has a factor of
exp(in1h cos u). These different factors account for the
difference in travel distance from the source to the field
point: The directly emitted waves travel directly toward
the detector, but the reflected waves first travel to the sur-
face and then reflect.

It can be shown from Eqs. (61) and (62) of Ref. 29 that
the generalized vector spherical harmonics have the prop-
erties

er – Vlm~2cos u, f ! 5 ~21 !l1m11er – Vlm~cos u, f !,
(34)

ez – Vlm~2cos u, f ! 5 ~21 !l1mez – Vlm~cos u, f !,
(35)

ef – Vlm~2cos u, f ! 5 ~21 !l1m11ef – Vlm~cos u, f !.
(36)

With eu 5 cos uer 2 sin uez we then have

~cos uer 1 sin uez! • Vlm~2cos u, f !

5 ~21 !l1m11eu – Vlm~cos u, f !, (37)

which can be used to simplify approximation (33). Then
we add approximations (32) and (33) to obtain the total
field in z . H:

E~r! '
~2i !lk0

2

4p«0n1r
blm~m !exp@in1~k0r 2 h cos u!#

3 $@1 1 ~21 !l1mRp~a1!exp~2in1h cos u!#

3 eu@eu – Vlm~cos u, f !#

1 @1 2 ~21 !l1mRs~a1!exp~2in1h cos u!#

3 ef@ef – Vlm~cos u, f !#%. (38)

The asymptotic approximation for an electric multipole
can be obtained in the same way. The result is effectively
the following: Replace blm(m) by blm(e) in approxima-
tion (38), switch Rs(a1) and Rp(a1), and take r̂ 3 ... .
We can obtain the magnetic field from Eq. (5) before mak-
ing the asymptotic approximation. When we then make
the asymptotic approximation, it appears that the mag-
netic field is given by

B~r! '
n1

c
r̂ 3 E~r! (39)

for both magnetic and electric multipoles.

8. ASYMPTOTIC APPROXIMATION
FOR zË 2L
The region z , 2L is occupied with a material with di-
electric constant «3 . When «3 has an imaginary part or a
negative real part (metal), then there is no far field in z
, 2L. Therefore, when considering the far field in z
, 2L, we assume «3 . 0. The wave vectors of the par-
tial waves are kt , and the general form of the stationary
phase approximation, given (u, f), is
E d2ki

1

b
exp~ikt – r!g~ki! '

2pi

r

n3 cos u

n1~cos ū !3

3 exp~in3k0r !g~ki,3!.

(40)

The stationary point for medium n3 is given by

ki,3 5 n3k0 sin uer . (41)

The extra factor appearing in approximation (40), as com-
pared with approximation (29), comes from 1/b in the in-
tegrand, which refers to the z component of the wave vec-
tor in medium n1 rather than n3 .

The direction of ki,3 in the xy plane is f, so (f̄ )3
5 f. With k i,3 5 n3k0 sin u and Eq. (23), we can see
that the value of a in the stationary point is a3
5 n3 sin u, and this becomes the argument of the Fresnel
transmission coefficients Ts(a). Again with Eq. (23) we
find (sin ū)3 5 a3 /n1 5 (n3 /n1)sin u, and therefore ū in the
stationary point is not equal to u. We introduce sin û as

sin û 5
n3

n1
sin u, (42)

which can be larger than unity for n3 . n1 . Then we set
cos û 5 2(1 2 sin2 û)1/2, which is negative or negative
imaginary and equals 2(cos ū)3 . In Eq. (28) for the
transmitted field we have four unit polarization vectors
that have to be evaluated in the stationary point. For s
polarization we find (es2)3 5 (est)3 5 2ef . From Eq.
(18) we find

~ep2!3 5 cos ûer 2 sin ûez (43)

since k̂i,3 5 er . From Eq. (26) we have (n3)3
5 n3ucos uu; and since p/2 , u , p for z , 2L, this is
(n3)3 5 2n3 cos u. With Eq. (27) we then find (ept)3
5 eu . We furthermore introduce modified transmission
coefficients by

T̂s~a! 5
n3

n1
Ts~a!, (44)

with n1 5 («1 2 a2)1/2, in analogy with Eq. (26). Com-
bining everything then yields the asymptotic approxima-
tion for the transmitted field of a magnetic multipole:

E~r! '
~2i !lk0

2

4p«0n1r
blm~m !exp~in3k0r 2 in1h cos û !

3 $T̂p~a3!eu@~cos ûer 2 sin ûez!

• Vlm~cos û, f !#

1 T̂s~a3!ef@ef – Vlm~cos û, f !#%. (45)

The result for an electric multipole follows from our re-
placing blm(m) by blm(e), switching T̂s(a3) and T̂p(a3),
and by taking r̂ 3 ... of approximation (45). The mag-
netic field is

B~r! '
n3

c
r̂ 3 E~r! (46)

for both magnetic and electric multipoles.
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When we detect the field at the polar angle u, the angle
of transmission is u t 5 p 2 u (measured from the nega-
tive z axis), since u . p/2. For û (if real), the sine is posi-
tive and the cosine is defined as negative, so p/2 , û
, p. If we let u inc 5 p 2 û, then Eq. (42) becomes
n1 sin uinc 5 n3 sin ut , which is Snell’s law of refraction;
therefore u inc is the angle of incidence of a plane wave
from the angular spectrum corresponding to the transmit-
ted plane wave that is detected at angle u. We further-
more see from Eq. (42) that, for n3 . n1 , sin û can become
larger than unity. Borderline is sin û 5 1, which corre-
sponds to u inc 5 p/2, and this occurs at a transmission
angle uac given by

sin uac 5
n1

n3
. (47)

In other words, for detection of a traveling wave at trans-
mission angle u t , with 0 < u t , uac the corresponding in-
cident wave is traveling and for u t in the range uac
, u t , p/2 the incident wave is evanescent. So uac is
the transmission angle at which the incident waves turn
evanescent, as mentioned in Section 1.

9. INTENSITY DISTRIBUTION
Having obtained the electric and magnetic fields of a mul-
tipole in the radiation zone, we now consider the intensity
distribution as a function of u and f. From here on we
shall write an equal sign instead of an approximation
sign. The Poynting vector for time-harmonic fields is de-
fined as

S~r! 5
1

2m0
Re E~r! 3 B~r!* . (48)

With approximation (39) or (46) we can express the mag-
netic field in terms of the electric field, and with r̂ – E(r)
5 0 the expression for the Poynting vector simplifies to

S~r! 5
n

2m0c
@E~r! • E~r!* #r̂, (49)

where n 5 n1 for z . H and n 5 n3 for z , 2L. The
emitted power per unit solid angle is dP/dV 5 r2S(r)
• r̂, and this becomes

dP

dV
5

n

2m0c
r2E~r! • E~r!* . (50)

We normalize this as

dP

dV
5 P1Nlm~ r̂; a!, (51)

with P1 the power emitted by an (a, l, m) multipole in a
medium with index of refraction n1 , but without any
boundaries. This power is explicitly

P1 5
1

2n1m0c S k0
2

4p«0
D 2

ublm~a!u2. (52)

We shall use this normalization for both the regions z
. H and z , 2L.

For z . H we find from approximation (38)
Nlm~ r̂; m ! 5 u1 1 ~21 !l1mRp~a1!

3 exp~2in1h cos u!u2ueu – Vlm~cos u, f !u2

1 u1 2 ~21 !l1mRs~a1!

3 exp~2in1h cos u!u2uef – Vlm~cos u, f !u2;

(53)

and if «3 . 0, we have from approximation (45)

Nlm~ r̂; m ! 5
n3

n1
exp~2n1h Im cos û !@ uT̂p~a3!u2u~cos ûer

2 sin ûez! • Vlm~cos û, f !u2

1 uT̂s~a3!u2uef – Vlm~cos û, f !u2#. (54)

For the electric multipole we have to replace blm(m) by
blm(e), but this has no effect on the normalized intensity
distribution Nlm( r̂; a) since this constant is absorbed in
P1 . Then we have to replace E(r) by r̂ 3 E(r), but this
also has no effect since @ r̂ 3 E(r)# • @ r̂ 3 E(r)* # 5 E(r)
• E(r)* . Therefore Nlm( r̂; e) simply follows from Eqs.

(53) and (54) by an exchange of the s and p Fresnel coef-
ficients.

10. FURTHER SIMPLIFICATIONS OF THE
INTENSITY DISTRIBUTION
It can be shown that the generalized vector spherical har-
monics have the properties

er – Vlm~z, f ! 5 exp~imf !ex – Vlm~z, 0!, (55)

ef – Vlm~z, f ! 5 exp~imf !ey – Vlm~z, 0!, (56)

ez – Vlm~z, f ! 5 exp~imf !ez – Vlm~z, 0!, (57)

for arbitrary complex z. We set z 5 cos u and z 5 cos û in
Eqs. (53) and (54), respectively. Since the phase factors
exp(imf ) appear inside absolute value signs, these can-
cel, and there is no f dependence left in Nlm( r̂; a). Fur-
thermore, it can be shown that

ex – Vl,2m~z, 0! 5 ~21 !m11ex – Vlm~z, 0!, (58)

en – Vl,2m~z, 0! 5 ~21 !mex – Vlm~z, 0!, (59)

ez – Vl,2m~z, 0! 5 ~21 !m11ez – Vlm~z, 0!, (60)

and therefore the intensity distribution is independent of
the sign of m.

Another property that can be derived for the general-
ized vector spherical harmonics is

@cos b~cos fex 1 sin fey! 2 sin bez# • Vlm~cos b, f !

5 2
1

sin b
ez – Vlm~cos b, f !, (61)

where cos b can be complex. After using Eqs. (55)–(57),
we need this result only for f 5 0. Then we introduce
the auxiliary functions
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flm~z ! 5
1

u1 2 z2u
uez – Vlm~z, 0!u2, (62)

glm~z ! 5 uey – Vlm~z, 0!u2, (63)

for complex z. The final result for the intensity distribu-
tion then becomes

Nlm~ r̂; m ! 5 u1 1 ~21 !l1mRp~a1!

3 exp~2in1h cos u!u2flm~cos u!

1 u1 2 ~21 !l1mRs~a1!

3 exp~2in1h cos u!u2glm~cos u!, (64)

Nlm~ r̂; m ! 5
n3

n1
exp~2n1h Im cos û !

3 @ uT̂p~a3!u2flm~cos û !

1 uT̂s~a3!u2glm~cos û !# (65)

for z . H and z , 2L, respectively.

11. DISCUSSION OF THE RESULT
Let us first consider a multipole in medium n1 , but with-
out any boundaries (free multipole). The Fresnel coeffi-
cients become Rs 5 0, Ts 5 1, and in the above result we
set n3 5 n1 . With Eq. (44) we then also have T̂s 5 1,
and from Eq. (42) and cos û , 0 we find that û is equal to
u. Then Im cos û 5 0 and the overall exponential in Eq.
(65) disappear. We then have

Nlm~ r̂; a! 5 flm~cos u! 1 glm~cos u! (66)

for both z . H and z , 2L. Since there is no longer a
dependence on H and L, this holds for all r̂; and since
there are no Fresnel coefficients left, there is no longer
any distinction between magnetic and electric multipoles.
The distribution is also independent of the index of refrac-
tion of the embedding medium. Equation (66) can also be
written as

Nlm~ r̂; a! 5 Vlm~cos u, 0! • Vlm~cos u, 0!* . (67)

From Vlm(cos u, 0) 5 Tllm(cos u, 0) and the fact that the
usual vector spherical harmonics are normalized for inte-
gration over the unit sphere, we have * dVNlm( r̂; a)
5 1. This shows that the constant P1 is indeed the
power emitted by the multipole in medium n1 .

Because of the boundary, reflected waves appear in z
. H, with amplitudes proportional to the Fresnel reflec-
tion coefficients Rs(a1). They are multiplied by the re-
tardation factor exp(2in1h cos u), which accounts for the
difference in travel distance between directly emitted and
reflected waves. The result is interference between the
directly emitted waves (the 1 inside the absolute value
signs) and the reflected waves. The overall functions
flm(cos u) and glm(cos u) account essentially for the angu-
lar distribution of a free multipole, but because the
Fresnel reflection coefficients for s and p waves are differ-
ent, Eq. (64) splits into two terms. It should be noted
that the additional minus sign in front of Rs(a1), as com-
pared with Rp(a1), is a result of our phase convention for
the polarization vectors. It is interesting to note that the
Fresnel coefficients are multiplied by (21) l1m, which rep-
resents a phase shift upon reflection. Apparently, this
phase shift depends on the l and m values of the multipole
and is the same for all angles u.

The radiation in z , 2L contains only transmitted
waves, so there is no interference. The amplitudes of the
transmitted waves are multiplied by a Fresnel transmis-
sion coefficient and an additional factor [Eq. (44)]. It is
interesting to see that Eq. (65) also splits into two terms
because of the difference in s and p waves and that the
overall factors of each term are the same functions flm
and glm as for the reflected waves in Eq. (64). The dif-
ference is that the argument of these functions here is
cos û, which refers to the angle of incidence rather than
the angle of transmission (or observation). As explained
in Section 8, for u t . uac the angle of incidence exceeds
p/2, and the incident wave is evanescent. This makes
cos û negative imaginary, and the overall factor
exp(2n1h Im cos û) decays rapidly with the dimensionless
multipole surface distance h, which is a reflection of the
fact that the evanescent waves emitted by the multipole
at z 5 H decay exponentially in the direction toward the
surface.

12. DIPOLES AND QUADRUPOLES
For a magnetic or an electric dipole we have l 5 1, and
the four auxiliary functions that determine the intensity
distribution are

f11~z ! 5
3

16p
, (68)

g11~z ! 5
3

16p
uzu2, (69)

f10~z ! 5 0, (70)

g10~z ! 5
3

8p
u1 2 z2u. (71)

Figure 2 shows a typical radiation pattern for n1 . n3 .
In the region z . H we observe a lobe structure, which is
due to interference between the directly emitted waves
and the reflected waves at the interface. The distribu-
tion for the magnetic and electric dipole are very similar
and indistinguishable for z , 2L for the parameters
used in Fig. 2. In Fig. 3, where n3 . n1 and m 5 1, we
can see that most of the intensity ends up in the region
z , 2L. The electric dipole has a lobe near the anticriti-
cal angle and a smooth distribution for 0 < u t , uac .
The intensity distribution of the magnetic dipole has a
sharp spike at uac . For m 5 0 this behavior approxi-
mately reverses.

For quadrupole radiation, for which l 5 2, the auxil-
iary functions are

f22~z ! 5
5

16p
u1 2 z2u, (72)

g22~z ! 5
5

16p
u1 2 z2uuzu2, (73)
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Fig. 2. Illustration of the intensity distribution N11( r̂; a) for a
5 e and a 5 m. The dimensionless distance between the di-
pole and the surface is h 5 1.8p (almost a wavelength) and l
5 0 (single interface). The dielectric constants are «1 5 1.5
and «3 5 1.

Fig. 3. Intensity distribution for dipole radiation with m 5 1.
The thin curve is for a magnetic dipole and the thick curve for an
electric dipole. The parameters are h 5 l 5 0, «1 5 1, and «3
5 4. The anticritical angle is 30°.

Fig. 4. Intensity distribution of electric quadrupole radiation
with m 5 2 for a free quadrupole (thin curve) and for a quadru-
pole near an interface (thick curve). For the free quadrupole the
intensity distribution is independent of the dielectric constant «1
and the height h. For the quadrupole near the interface the pa-
rameters are h 5 p, l 5 0, «1 5 2, and «3 5 1.7.
f21~z ! 5
5

16p
uzu2, (74)

g21~z ! 5
5

16p
u2z2 2 1u2, (75)

f20~z ! 5 0, (76)

g20~z ! 5
15

8p
u1 2 z2uuzu2. (77)

Figure 4 shows the intensity distribution for an electric
quadrupole with m 5 2 near the interface and the corre-
sponding distribution for the same free quadrupole.
Since n1 . n3 , most radiation is emitted in the direction
z . H, and we can see the appearance of a very strong
peak due to interference. For Fig. 5, the indices of refrac-
tion are exchanged, as compared with Fig. 4, but all other
parameters are the same. The dimensionless height is
h 5 p, corresponding to half a wavelength. The distri-
bution has a sharp cutoff at uac , which is due to the fact
that the radiation in the range uac , u t , p/2 has it ori-
gin in evanescent waves from the quadrupole. Already
for the modest value of h 5 p it appears that the evanes-
cent waves do not reach the surface with sufficient ampli-
tude to contribute to the refracted far field.

13. CONCLUSIONS
From the angular spectrum representation for the radia-
tion emitted by a magnetic and an electric multipole of ar-
bitrary order, an angular spectrum representation for the
reflected and refracted fields by an interface has been de-
rived. The reflected and transmitted fields were ex-
pressed in terms of Fresnel reflection and transmission
coefficients, and this includes the situation shown in Fig.
1 where the interface consists of a layer and a substrate.
With the method of stationary phase, an asymptotic ap-
proximation for the far field, both in z . H and z
, 2L, was derived. The resulting intensity distribution
could be expressed in terms of two universal auxiliary
functions flm(z) and glm(z), defined in terms of general-
ized vector spherical harmonics. For radiation emitted

Fig. 5. Radiation pattern for an electric quadrupole with m
5 2 near an interface. We took h 5 p and l 5 0, and the di-
electric constants are «1 5 1.7 and «3 5 2 so that uac 5 67°.
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in the z . H direction, we have z 5 cos u with u the ob-
servation direction. For z , 2L this variable is z
5 cos û, which equals cos û 5 2@1 2 («3 /«1)sin2 u#1/2.
With Snell’s law we then see that cos û 5 2cos uinc for the
case in which the incident wave is traveling, given the ob-
servation direction u. On the other hand, for an evanes-
cent incident wave, cos û is imaginary. This corresponds
to the situation in which an evanescent wave is converted
into a traveling wave by the interface, and subsequently
this traveling wave ends up in the far field. It was also
shown that the radiation pattern for an electric multipole
can be obtained from the result for a magnetic multipole,
given by Eqs. (64) and (65), simply by an exchange of the
Fresnel coefficients for s- and p-polarized waves.

The author’s e-mail address is arnoldus
@ra.msstate.edu.
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30. A. Erdélyi, ‘‘Zur Theory der Kugelwellen,’’ Physica (Utrecht)
4, 107–120 (1937).

31. J. E. Sipe, ‘‘The dipole antenna problem in surface physics:
a new approach,’’ Surf. Sci. 105, 489–504 (1981).

32. J. E. Sipe, ‘‘New Green function formalism for surface op-
tics,’’ J. Opt. Soc. Am. B 4, 481–489 (1987).

33. J. Gasper, G. C. Sherman, and J. J. Stamnes, ‘‘Reflection
and refraction of an arbitrary electromagnetic wave at a
plane interface,’’ J. Opt. Soc. Am. 66, 955–961 (1976).

34. G. C. Sherman, J. J. Stamnes, and É. Lalor, ‘‘Asymptotic
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