
CHAPTER 14

THE DIFFRACTIVE MULTIFOCAL

FOCUSING EFFECT

John T. Foley, Renat R. Letfullin, and Henk F. Arnoldus

14.1 Introduction

It is well known that when a monochromatic plane wave of intensity Io is normally
incident upon a circular aperture, the intensity at on-axis observation points be-
hind the aperture oscillates between the values 4Io and zero as the distance from
the aperture is increased. The reason for this is that the various Fresnel zones in
the aperture contribute either constructively or destructively to the amplitude of
the field at the observation point in question, causing the amplitude to oscillate
between zero and twice the incident field value. For an incident wavelength λ,
aperture radius a, and aperture-plane to observation-plane distance z, the number
of zones that contribute is given by the Fresnel number, N = a2/λz. The maxima
and minima occur at observation points where the Fresnel number is an odd or
even integer, respectively.

What is commonly not recognized is the fact that in the region near the z-
axis, as z is increased, the light is repeatedly focusing and defocusing, over and
over again due to diffraction. The focal points occur at positions where the Fresnel
number is an odd integer. This was pointed out in a series of papers by Lit and
coworkers [1–3] and most recently by Letfullin and George [4], who referred
to this phenomenon as the diffractive multifocal focusing of radiation (DMFR)
effect.

Letfullin and George proposed to use a system of two circular apertures for
which the on-axis intensity of an incident monochromatic plane wave would in-
crease dramatically due to the DMFR effect. In their system the second aperture
was located where the Fresnel number of the first aperture was unity. They ana-
lyzed this system theoretically, and showed that the on-axis intensity behind the
second aperture oscillates between maximum values of the order of 10 times that
of the incident wave and minimum values that are very small, but not zero. These
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290 The Diffractive Multifocal Focusing Effect

predictions were verified experimentally [5,6] and extended theoretically to inci-
dent fields with a Gaussian amplitude distribution [7]. In Refs. [4–7] the phase
of the field was not investigated.

In this chapter we investigate the intensity and phase of the diffracted field be-
hind a circular aperture when a monochromatic plane wave is incident upon it, and
when a monochromatic Gaussian beam is incident upon it. We also investigate the
intensity and phase of the diffracted field behind a system of two circular apertures
for the same two incident fields. In each case we substantiate the focusing, defocus-
ing and refocusing interpretation mentioned above, and investigate the intensity at
the focal points.

In Sect. 14.2.1 we show that when a plane wave is incident upon a single cir-
cular aperture, in the neighborhood of a focal point (where the Fresnel number
is odd) the phase of the wave approaching the focal point is that of a converging
wave, the phase front in the focal plane is planar, and the phase of the wave exiting
the focal point is that of a diverging wave. We also show that the wave becomes
more and more divergent as the distance from the focal point is increased, until
a position is reached where the Fresnel number is even. At such a point the in-
tensity of the wave is zero, and the phase of the wave is undefined, i.e., singular.
We show that as the on-axis observation point moves away from the aperture and
passes through a singular point, the nature of the wave in the neighborhood of the
axis changes from that of a diverging wave to that of a converging wave, i.e., the
wave refocuses. In Sect. 14.2.2 we show that when the incident field is a Gaussian
beam, the phase behaves similarly, and the intensities at the focal points decrease
as the ratio of the radius of the aperture to the spot size of the incident beam is
increased.

In Sect. 14.3.1 we use the results of Sect. 14.2 to investigate the intensity and
the phase of the field after the second aperture in a system of two circular aper-
tures when a plane wave is incident. In this case the ratio of the radii of the two
apertures is a key parameter, and we discuss the effect of varying this ratio. In
Sect. 14.3.2, we do the same for a Gaussian beam incident upon a two aperture
system.

We use scalar wave theory throughout this paper. Unlike in Refs. [4] and [7],
where the monochromatic wave equation (the Helmholtz equation) was integrated
numerically, we use the Fresnel approximation and the paraxial approximation in
our calculations.
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14.2 Fresnel Diffraction by a Circular Aperture

14.2.1 Incident plane wave

14.2.1.1 Basic equations

Consider a monochromatic plane wave of amplitude Uo and angular frequency
ω, propagating in the positive z-direction, and normally incident upon an opaque
screen in the plane z = 0, containing an aperture of radius a. The aperture is
centered about the origin. Let P′ = (x′, y′, 0) be a point inside the aperture, and let
P = (x, y, z) be a point in an observation plane z = constant > 0 (see Fig. 1). In
cylindrical polar coordinates we have P′ = (ρ′,θ′, 0) and P = (ρ,θ, z). We assume
a time dependence of exp(–iωt) for the field. The complex amplitude, U(i)(ρ,θ, z),
of the incident field is given by

U(i)(ρ,θ, z) = Uoeikz, (1)

where Uo is a positive constant and k = ω/c is the wave number of the light.
We make the following assumptions. First, that the wavelength λ is much

smaller than the distance z from the aperture plane to the observation plane. Sec-
ond, that the Fresnel number of the observation plane is small, and that the trans-

Figure 1 Geometry for the diffraction of a plane wave from a circular aperture with
radius a. Point P′ = (ρ′, θ′, 0) is a point inside the aperture and P = (ρ, θ, z) is a point in
the observation plane z = constant.
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verse distance ρ is less than the aperture radius a and much less than the dis-
tance z. In this case the paraxial form of the Fresnel approximation to the Rayleigh-
Sommerfeld diffraction formula [8] is appropriate for describing the field. The
complex amplitude, U(ρ,θ, z), of the diffracted field can then be written as

U(ρ,θ, z) =
k

2πiz
Uoeikzeikρ2/2z

×
∫ a

0

∫ 2π

0
U(i)(ρ′,θ′, 0)eikρ′2/2ze–ikρρ′cos(θ–θ′)/zρ′dρ′dθ′. (2)

Equation (2) is equivalent to the formula used by Lommel [9] for the case in
which the incident field is a diverging spherical wave.

Let us now simplify this equation. Upon substituting the value of U(ρ′,θ′, 0)
from Eq. (1) into this equation and performing the angular integration, we find
that the complex amplitude of the field is independent of the angle θ and is given
by the expression

U(ρ, z) =
k
iz

Uoeikzeikρ2/2z
∫ a

0
eikρ′2/2zJ0(kρρ′/z)ρ′dρ′, (3)

where J0(x) is the zero-order Bessel function of the first kind. Let us now make the
change of variables ρ′ = ξa. Upon making this change, Eq. (3) can be rewritten
in terms of two dimensionless variables u and v as

U(ρ, z) = –iuUoe
ikzeiv2/2u

∫ 1

0
eiuξ2/2J0(vξ)ξ dξ, (4)

where

u = 2πN, v = 2πNρ/a, (5)

and N is the Fresnel number of the aperture at the on-axis observation point,

N = a2/λz. (6)

Let us now put Eq. (4) into a form more suitable for calculations. It is shown in
Sect. 14.A that in the lit region (where ρ < a and hence v < u) the integral on the
right-hand side of Eq. (4) can be expressed as

∫ 1

0
eiuξ2/2J0(vξ)ξ dξ =

i
u

{
e–iv2/2u – eiu/2[V0(u, v) – iV1(u, v)]

}
, (7)
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where V0(u, v) and V1(u, v) are Lommel functions of two variables:

Vn(u, v) =
∞∑

s=0

(–1)s
(v

u

)2s+n
J2s+n(v). (8)

Upon substituting the right-hand side of Eq. (7) into Eq. (4), the field in the lit
region attains the form

U(ρ, z) = UoeikzM(ρ, z), (9)

where

M(ρ, z) = 1 – eiu/2eiv2/2u[V0(u, v) – iV1(u, v)]. (10)

Equation (9) shows that the diffracted complex amplitude is the product of the
incident field amplitude Uoeikz (i.e., the total field if no aperture were present), and
the function M(ρ, z). We shall therefore refer to M(ρ, z) as the modifier function,
since it describes how the presence of the aperture modifies the field.

The intensity, I(ρ, z), of the field in the lit region is given by

I(ρ, z) = U(ρ, z)*U(ρ, z) = Io|M(ρ, z)|2, (11)

where * denotes the complex conjugate and Io = |Uo|2 is the intensity of the in-
cident field. It follows from Eq. (9) that the phase φ(ρ, z) of the field is given
by

φ(ρ, z) = kz + ψ(ρ, z), (12)

where

ψ(ρ, z) = argM(ρ, z), (13)

and arg denotes the argument of the complex-valued function M(ρ, z). We shall
refer to ψ(ρ, z) as the reduced phase.

14.2.1.2 On-axis intensity and phase

Let us first examine the intensity and phase at on-axis observation points. At such
points, ρ = 0 and hence v = 0. It follows directly from Eq. (8) that V0(u, 0) = 1
and V1(u, 0) = 0. We then find from Eq. (10) that the on-axis modifier function is

M(0, z) = 1 – eiu/2 = 1 – eiNπ, (14)
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where the z-dependence enters through the Fresnel number N. It then follows
from Eq. (11) that the on-axis intensity is given by

I(0, z) = Io
∣∣1 – eiNπ

∣∣2
= 4Iosin2(Nπ/2). (15)

This function is plotted in Fig. 2 over the interval 1 ≤ N ≤ 6. When the Fresnel
number is odd, the intensity is maximum with a value of I(0, z) = 4Io. We will refer
to the corresponding observation points as focal points. When the Fresnel number is
even we have I(0, z) = 0, and we will refer to the corresponding observation points
as singular points because the modulus of the complex amplitude U(0, z) is zero at
such points, and hence its phase is undefined there [10,11].

The expression for the reduced phase can be obtained from Eqs. (13) and (14),
and we find that

ψ(0, z) = arg(1 – eiNπ). (16)

This function is plotted in Fig. 3 over the interval 1 ≤ N ≤ 6. Note that the phase
jumps by π as we pass through the singular points N = 2, 4 and 6.

14.2.1.3 General case

In this section, the intensity and reduced phase in observation planes at a variety
of distances from the aperture will be investigated. For the sake of comparison, let
us first recall the paraxial form for a diverging spherical wave. A spherical wave
emanating from the origin and arriving at the position P in Fig. 1 is described by
the wave function exp(ikr)/r, where r = (ρ2 + z2)1/2. The paraxial approximation
to this function is exp(ikr)/r ≈ exp[ik(z + ρ2/2z)]/z. Upon comparing this equa-
tion to Eq. (9), we see that the paraxial approximation to the reduced phase of this

Figure 2 The on-axis intensity I, in units of Io, as a function of the Fresnel number N.
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Figure 3 The on-axis reduced phase ψ, in units of π, as a function of the Fresnel num-
ber N.

wave is

ψ(ρ, z) ≈ kρ2/2z. (17)

The intensity and reduced phase of the diffracted field along the x-axis in sev-
eral observation planes at different distances from the aperture plane are plotted
in Figs. 4 and 5. The behavior of the field as we travel outward from the aper-
ture plane and pass through a focal point is depicted in Figs. 4(a) through 4(c).
In Fig. 4(a) the Fresnel number is 3.5, and in this plane we see that the reduced
phase near the axis has a curvature with the opposite sign of that of the phase in
Eq. (17). Hence the wave in this plane corresponds to a converging wave. The
on-axis intensity value is approximately 2.0. In Fig. 4(b) the Fresnel number is 3.
This is a focal plane, and we see that the reduced phase is constant near the axis,
i.e., the wave is behaving like a plane wave in this region. The on-axis intensity
value in this case is 4.0. In Fig. 4(c) the Fresnel number is 2.5, and we see that in
this plane the reduced phase near the axis has a curvature with the same sign as the
phase in Eq. (17). Hence the wave corresponds to a diverging wave. The on-axis
intensity value is approximately 2.0.

As we move further away from the aperture plane, the wave near the axis di-
verges more strongly, until we reach the on-axis point where the Fresnel number
is 2.0. At this point the intensity of the field is zero, and its phase is undefined.
Such a point is referred to as a singular point of the field. Figure 4(d) shows the
intensity and phase of the wave in the plane where the Fresnel number is 2.01,
i.e., just before we reach the singular point. The phase near the axis has a steep
upward curvature, corresponding to a strongly diverging wave. The value of the
phase on-axis is approximately –π/2. Figure 5(a) shows the intensity and phase
of the wave in the plane where the Fresnel number is 1.99, i.e., just after we have
passed through the singular point. The phase near the axis has a steep downward
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Figure 4 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position along the
x-axis for observation planes with Fresnel numbers: (a) N = 3.5, (b) N = 3, (c) N = 2.5,
and (d) N = 2.01.

curvature, corresponding to a strongly converging wave. The on-axis value of the
phase here is approximately π/2, so as we pass through the singular point, the phase
jumps by π. Figure 5(b) shows that as we continue to move further away from the
aperture plane, the field near the axis starts to converge less strongly. Finally, at
the next focal point, the plane where N = 1.0, we see that the phase near the axis
is again constant; and hence the wave is again behaving like a plane wave. This is
shown in Fig. 5(c). In addition, by comparing Fig. 5(c) to Fig. 4(b), we see that for
focal points further from the aperture plane, the wavefront is planar over a larger
area in the observation plane.

Figure 6 shows the lines of constant phase, φ, in the xz-plane near the N = 2
singular point, for the case a/λ = 50. It is evident from the figure that as the wave
approaches the singular point, it is a diverging wave whose radius of curvature
becomes smaller and smaller. It also follows from the figure that after the wave
has passed through the singular point, it is now a converging wave whose radius of
curvature is increasing.
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Figure 5 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position along
the x-axis for observation planes with Fresnel numbers: (a) N = 1.99, (b) N = 1.5, and
(c) N = 1.0.

Figure 6 Lines of constant phase, φ, in the xz-plane near the N = 2 singular point
when a/λ = 50. The transverse coordinate x is in units of a, and the z-coordinate is in
units of the wavelength λ. The value of the phase for each line is labeled in units of π/4.
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14.2.2 Incident Gaussian beam

14.2.2.1 Basic equations

Let the incident field be a Gaussian beam whose waist occurs at the aperture plane
z = 0. The complex amplitude of the incident field is

U(i)(ρ,θ, z) = Uo
wo

w
ei(kz–χ)eikρ2/2Re–ρ2/w2

, (18)

where Uo is a positive constant and wo is the spot size of the beam waist. Here, w
is the spot size in the plane z = constant,

w = wo

√
1 + (z/zR)2, (19)

R is the radius of curvature in that plane,

R = z +
z2

R

z
, (20)

χ is the Gouy phase

tanχ =
z

zR
, (21)

and zR = πw2
o /λ is the Rayleigh length of the beam. It follows from Eqs. (18)–

(21) that the complex amplitude in the plane z = 0 is

U(i)(ρ′,θ′, 0) = Uoe–ρ′2/w2
o . (22)

In order to find the field at the observation point P = (ρ,θ, z), we substitute
the incident field into Eq. (2). After performing the angular integration, we find
that the complex amplitude of the field is independent of θ and is given by the
expression

U(ρ, z) =
k
iz

Uoeikzeikρ2/2z
∫ a

0
e–ρ′2/w2

o eikρ′2/2zJ0(kρρ′/z)ρ′dρ′. (23)

Let us now make the change of variables ρ′ = ξa. Upon making this change,
Eq. (23) can be rewritten in terms of two dimensionless variables u and v as

U(ρ, z) = –iUo2πNeikzeiNπ(ρ/a)2
∫ 1

0
eiuξ2/2J0(vξ)ξ dξ, (24)
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where

u = 2πN + 2iβ2, v = 2πN(ρ/a). (25)

Here, N is the Fresnel number of the aperture at an on-axis observation point,
given by Eq. (6), and

β = a/wo. (26)

We will refer to β as the aperture-spot ratio since its numerical value specifies how
many beam spots would fit across the aperture.

If we now substitute the right-hand side of Eq. (7) into Eq. (24), we find that
the complex amplitude is

U(ρ, z) = UoeikzG(ρ, z), (27)

where

G(ρ, z) =
2πN

u
eiNπ(ρ/a)2

e–iv2/2uM(ρ, z), (28)

and M(ρ, z) is given by Eq. (10). Note, however, that in the present case the vari-
able u on the right-hand side of Eq. (10) is a complex value [see Eq. (25)]. The
intensity of the field in the lit region is given by

I(ρ, z) = |U(ρ, z)|2 = Io|G(ρ, z)|2, (29)

where Io = |Uo|2 is the on-axis incident intensity in the plane z = 0. It follows
from Eq. (28) that the phase of the field is

φ(ρ, z) = kz + ψ(ρ, z), (30)

where

ψ(ρ, z) = argG(ρ, z). (31)

As before, we shall refer to ψ(ρ, z) as the reduced phase.
Equation (27) is a useful way of writing the complex amplitude of the diffracted

field, especially for calculations, but there is an alternative representation that is
interesting. It is shown in Sect. 14.B that

2πN
u

=
wo

w
e–iχ, (32)
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and that

eiNπ(ρ/a)2
e–iv2/2u = eikρ2/2Re–ρ2/w2

. (33)

After substituting the right-hand side of this equation into Eq. (28), and then
substituting that result into Eq. (27) we obtain

U(ρ, z) = Uo
wo

w
ei(kz–χ)eikρ2/2Re–ρ2/w2

M(ρ, z), (34)

which is

U(ρ, z) = U(i)(ρ,θ, z)M(ρ, z), (35)

with U(i)(ρ,θ, z) given by Eq. (18). Equation (35) shows that the diffracted com-
plex amplitude is the product of the incident field complex amplitude and the func-
tion M(ρ, z). Hence, as in the previous section, we shall refer to M(ρ, z) as the
modifier function, since it describes how the presence of the aperture modifies the
field.

14.2.2.2 On-axis intensity and phase

Let us now examine the intensity and phase at on-axis observation points. At such
points, ρ = 0, v = 0, and the corresponding modifier function is given by

M(0, z) = 1 – eiu/2 = 1 – eiNπe–β2
. (36)

It then follows from Eqs. (29) and (28) that

I(0, z) = Io|G(0, z)|2 = Io
4π2N2

|u|2 |M(0, z)|2 = Io
4π2N2

|u|2
∣∣∣1 – eiNπe–β2

∣∣∣2
, (37)

where u is given by Eq. (25).
Figure 7 depicts the on-axis intensity as a function of the Fresnel number

for four different values of the aperture-spot ratio. In all four cases the intensity
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Figure 7 The on-axis intensity I, in units of Io, for β = 0.25 (dashed line), β = 0.50
(thin solid line), β = 0.75 (medium solid line), and β = 1.0 (thick solid line).

is maximum (minimum) when the Fresnel number is approximately odd (even).
These plots show that as the aperture-spot ratio increases, the focusing effect be-
comes weaker: the values of the maximum intensity decrease (as compared to the
value of 4 for the case of an incident plane wave) and the values of the mini-
mum intensity increase (with respect to the value of zero for the incident plane
wave).

It follows from Eqs. (35) and (36) that the on-axis field is

U(0, z) = Uo
wo

w
ei(kz–χ)

(
1 – eiNπe–β2

)
. (38)

The on-axis reduced phase is therefore

ψ(0, z) = arg
[
e–iχ

(
1 – eiNπe–β2

)]
. (39)

It is interesting to notice that when the Fresnel number is an integer, we have
ψ(0, z) = –χ. Figure 8 shows the on-axis reduced phase as a function of the Fres-
nel number for the same four values of the aperture-spot ratio as in Fig. 7. As the
aperture-spot ratio is increased, the size of the phase change decreases.
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Figure 8 The on-axis reduced phase ψ, in units of π, for β = 0.25 (dashed line),
β = 0.50 (thin solid line), β = 0.75 (medium solid line), and β = 1.0 (thick solid line).

14.2.2.3 General case

The intensity and reduced phase of the diffracted field along the x-axis in several
observation planes are plotted in Fig. 9, for the case β = 0.57, i.e., a = 0.57wo.
The behavior of the field as we travel outward from the aperture plane and pass
through a focal plane is depicted in Figs. 9(a) through 9(c). In Fig. 9(a) the Fresnel
number is 3.5. The downward curvature of the phase near the axis shows that
the wave is converging in that region. In Fig. 9(b) the Fresnel number is 3. The
phase is constant near the axis, and hence the wavefront is planar in this region. In
Fig. 9(c) the Fresnel number is 2.5. The upward curvature of the phase shows that
the wave is diverging in this region. The qualitative behavior of the intensity and
phase pictured in Figs. 9(a)–(c) is very similar to the behavior of the intensity and
phase in the plane wave case [see Figs. 4(a)–(c)]. The main difference is that the
peak intensity in the N = 3 focal plane is 2.96 in the present case, and was 4 in the
plane wave case.

As we move further away from the aperture plane, the field continues to di-
verge, until we approach the on-axis position where N = 2 [Fig. 9(d)]. The in-
tensity then goes through a minimum, and the character of the wave changes from
diverging to converging as we pass through this point. The behavior is similar to
that seen at the position where N = 2 in the plane wave case. The present be-
havior is different in that the phase varies continuously as we pass through this
point (see Fig. 8), instead of discontinuously, as it did in the plane wave case (see
Fig. 3).

As we get further away from the aperture plane the wave becomes converging
again. This is illustrated by the plot of the phase in Fig. 9(e), where N = 1.5. The
downward curvature of the phase near the axis means that the wave is converging
in this region. As we approach the point where N = 1, the wavefront flattens out.
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Figure 9 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position along the
x axis for observation planes with Fresnel numbers: (a) N = 3.5, (b) N = 3, (c) N = 2.5,
(d) N = 2, (e) N = 1.5, and (f) N = 1. The parameter β is 0.57.

Figure 9(f) shows that the phase is constant near the axis when N = 1; therefore
the wavefront is planar in this region. The character of the wave as we move from
the plane N = 1.5 to the plane N = 1 is similar to that in the plane wave case. The
major difference is that the peak intensity at the N = 1 plane here is 2.94, whereas
for the case of a plane wave it was 4.



304 The Diffractive Multifocal Focusing Effect

14.3 Fresnel Diffraction by a Bicomponent System of

Apertures

14.3.1 Incident plane wave

14.3.1.1 Basic equations

Let us now consider the two-aperture system depicted in Fig. 10. The radius of
the first aperture is a1, the radius of the second aperture is a2, and the distance
between the planes containing the apertures is L. Let P′′ = (x′′, y′′, L) be a point
inside the second aperture, and P = (x, y, z) be an observation point in the plane
z = constant > L. In cylindrical polar coordinates we then write P′′ = (ρ′′,θ′′, L)
and P = (ρ,θ, z). It follows from Eqs. (9) and (10) that the complex amplitude of
the field incident upon the second aperture is given by

U(ρ′′,θ′′, L) = UoeikL
{

1 – eiu1/2eiv2
1/2u1[V0(u1, v1) – iV1(u1, v1)]

}
, (40)

where u1 = 2πN1, v1 = 2πN1ρ
′′/a1 and N1 = a2

1/λL.
In order to compare our results for the intensity to those of Ref. [4], we now

assume that the distance L is such that N1, the Fresnel number of the first aper-
ture at the center of the second aperture, is equal to unity. In this case, u1 = 2π,

Figure 10 Geometry for the diffraction of a plane wave by a system of two circular
apertures with radii a1 and a2, respectively. The distance between the two aperture planes
is L. Point P′′ = (ρ′′, θ′′, L) is a point inside the second aperture and P = (ρ, θ, z) is a
point in the observation plane z = constant.
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v1 = 2πρ′′/a1 and Eq. (40) can be written as

U(ρ′′,θ′′, L) = Uoe
ikL [

1 + D(ρ′′/a1)
]

, (41)

where

D(w) = eiπw2
[V0(2π, 2πw) – iV1(2π, 2πw)]. (42)

Let us now investigate the complex amplitude, U(ρ,θ, z), of the diffracted field in
the region z > L. The paraxial form of the Fresnel approximation to the Rayleigh-
Sommerfeld diffraction formula tells us that this field is given by the expression

U(ρ,θ, z) =
k

2πi(z – L)
eik(z–L)eikρ2/2(z–L)

×
∫ a2

0

∫ 2π

0
U(ρ′′,θ′′, L)eikρ′′2/2(z–L)e–ikρρ′′cos(θ–θ′′)/(z–L)ρ′′dρ′′dθ′′.

(43)

Upon substituting the right-hand side of Eq. (41) into Eq. (43) and performing
the angular integration, we find that the field is independent of the angle θ and
given by

U(ρ, z) =
k

i(z – L)
Uoeikzeikρ2/2(z–L)

×
∫ a2

0

[
1 + D(ρ′′/a1)

]
eikρ′′2/2(z–L)J0

[
kρρ′′/(z – L)

]
ρ′′dρ′′. (44)

Let us now make the change of variable ρ′′ = ξa2. After using this relation in
the right-hand side of Eq. (44), we find that the field can be described in terms of
the dimensionless variables u2 and v2 as

U(ρ, z) = –iu2Uoeikzeiv2
2/2u2

∫ 1

0
[1 + D(αξ)]eiu2ξ

2/2J0(v2ξ)ξ dξ, (45)

where

u2 = 2πN2, v2 = 2πN2ρ
′′/a2, (46)

with N2 the Fresnel number of the second aperture at the on-axis point in the
observation plane,

N2 = a2
2/λ(z – L), (47)
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and α the ratio of the radii of the two apertures,

α = a2/a1. (48)

By analogy with the results of Sect. 14.2, let us write Eq. (45) as

U(ρ, z) = UoeikzM(ρ, z), (49)

where

M(ρ, z) = –iu2eiv2
2/2u2

∫ 1

0
[1 + D(αξ)]eiu2ξ

2/2J0(v2ξ)ξ dξ. (50)

It follows from Eq. (49) that the intensity and phase of the field in the lit region
are given, respectively, by Eqs. (11) and (12), with M(ρ, z) given by Eq. (50) and
the reduced phase defined as in Eq. (13). The function M(ρ, z) can be evaluated
by numerical integration.

14.3.1.2 On-axis intensity and phase

The on-axis intensity and reduced phase of the field after the second aperture were
calculated by the method described above, and are plotted as a function of the
Fresnel number N2 for α = 0.1 in Fig. 11, and for α = 0.5 in Fig. 12. One gen-
eral comment is in order before discussing the results. There are no true singular
points behind the second aperture, because even at points where the intensity is
minimum, its value is not exactly zero.

Figures 11 and 12 show the results for α = 0.1 and 0.5, respectively. In both
cases the values of the intensity and the reduced phase oscillate as functions of N2.
Upon comparing the two sets of curves, we see that three changes occur when α

is increased from 0.1 to 0.5. First, the maximum value of the on-axis intensity de-
creases (from approximately 15Io to 8Io), and the minimum value increases (from
approximately zero to Io). Second, the amplitude of the oscillation of the reduced
phase decreases and does not occur so suddenly. Finally, at the smaller value of
α the maxima (minima) of the intensity occur when the Fresnel number is odd
(even), but at the larger value they are shifted to slightly higher values of N2; like-
wise the reduced phase curve is also shifted toward higher values of N2.

The explanation for this behavior is as follows. When α = 0.1, the radius of
the second aperture is 10 times smaller than that of the first. In this case the results
of Sect. 14.2 show that the phase of the field incident upon the second aperture
is constant across it [see Fig. 5(c)], and that the value of the intensity incident
upon it varies by only 10% across it. Therefore the field incident upon the sec-
ond aperture is very similar to the field incident upon the first aperture (a constant
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Figure 11 Plots of I/Io and ψ/π for on-axis observation points as functions of the Fres-
nel number N2 for α = 0.1.

Figure 12 Plots of I/Io and ψ/π for on-axis observation points as functions of the Fres-
nel number N2 for α = 0.5.
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amplitude, normally incident plane wave), and this explains why the second aper-
ture increases the on-axis intensity at the focal points by a factor of close to four,
why the intensities at the minima are approximately zero, and why the phase jumps
are approximately equal to π. As α increases from the value 0.1, the phase of the
field incident upon the second aperture remains approximately constant across it,
but the intensity begins to vary considerably. As a result, the effect of the second
aperture becomes less ideal. When α = 0.5, as in Fig. 12, both the phase and the
intensity of the field incident upon the second aperture vary significantly across it
[see Fig. 5(c)], and the effect of the second aperture is correspondingly less ideal.

14.3.1.3 General case

The intensity and reduced phase of the diffracted field as a function of the scaled
transverse coordinate x/a2 in six different planes behind the second aperture are
shown in Fig. 13 for the case α = 0.4. In Fig. 13(a) the value of the Fresnel
number, N2 = 3.06, was chosen such that the on-axis intensity was maximum, i.e.,
so that the plane is a focal plane. We see from the figure that the phase near the axis
is approximately constant, so that the wave in that region is behaving like a plane
wave. In Figs. 13(b) and 13(c) the Fresnel numbers are 2.5 and 2.37, respectively,
and the wave is diverging in each case. In Fig. 13(d) the Fresnel number is 1.74,
and the wave has changed from a diverging wave to a converging wave, i.e., it
has refocused. In Fig. 13(e) the Fresnel number is 1.5, and the wave continues to
converge. In Fig. 13(f) the Fresnel number is 1.05, and the plane is a focal plane.
The on-axis intensity is maximum, and the phase near the axis is approximately
constant. In Ref. [4] the value of α was 0.4, as it is in Fig. 13. Our results for the
intensities agree well with those of Ref. [4].

14.3.2 Incident Gaussian beam

14.3.2.1 Basic equations

It follows from Eqs. (27), (28), and (10) that the complex amplitude of the field
incident upon the second aperture is

U(ρ′′, L) = UoeikLH(ρ′′/a1), (51)

where

H(w) =
2πN1

u1
eiN1πw2

{
e–iv2

1/2u1 – eiu1/2[V0(u1, v1) – iV1(u1, v1)]
}

. (52)

Here,

u1 = 2πN1 + 2iβ2, v1 = 2πN1w, (53)
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Figure 13 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position along
the x-axis for observation planes behind the second aperture with Fresnel numbers:
(a) N2 = 3.06, (b) N2 = 2.5, (c) N2 = 2.37, (d) N2 = 1.74, (e) N2 = 1.5, and
(f) N2 = 1.05.

and N1 is the Fresnel number of the first aperture at the observation point at the
center of the second aperture,

N1 = a2
1/λL. (54)
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As in the previous section, let N1 = 1. Equation (52) then simplifies to

H(w) =
2π
u1

eiπw2
{

e–iv2
1/2u1 – eiu1/2[V0(u1, v1) – iV1(u1, v1)]

}
, (55)

where u1 = 2π+ 2iβ2, and v1 = 2πw. In order to find the field at the observation
point P = (ρ,θ, z) we substitute this incident field into Eq. (43). Upon perform-
ing the angular integration, we find that the field is independent of the angle θ and
that

U(ρ, z) =
k

i(z – L)
Uoeikzeikρ2/2(z–L)

×
∫ a2

0
H(ρ′′/a1)eikρ′′2/2(z–L)J0[kρρ′′/(z – L)]ρ′′dρ′′. (56)

Let us now make the change of variable ρ′′ = ξa2. After substituting this relation
into the right-hand side of Eq. (56), we find that the field can be described in terms
of the dimensionless variables u2 and v2 as

U(ρ, z) = –iu2Uoeikzeiv2
2/2u2

∫ 1

0
H(αξ)eiu2ξ

2/2J0(v2ξ)ξ dξ, (57)

where

u2 = 2πN2, v2 = 2πN2ρ/a2. (58)

Here, N2 is the Fresnel number of the second aperture at the observation point
(ρ,θ, z),

N2 = a2
2/λ(z – L), (59)

and α is the ratio of the radii of the two apertures [see Eq. (48)]. By analogy with
the results of the previous subsection, let us write Eq. (57) as

U(ρ, z) = Uoe
ikzG(ρ, z), (60)

where

G(ρ, z) = –iu2eiv2
2/2u2

∫ 1

0
H(αξ)eiu2ξ

2/2J0(v2ξ)ξ dξ. (61)

It follows from Eq. (60) that the intensity and phase of the field in the lit region
are given by Eqs. (29) and (30), respectively, with G(ρ, z) given by Eq. (61) and
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the reduced phase defined as in Eq. (31). The function G(ρ, z) can be evaluated
by numerical integration.

14.3.2.2 On-axis intensity and phase

The on-axis intensity and phase behind the second aperture were calculated using
the methods described above. Figure 14 shows plots of the on-axis intensity as
a function of N2 for: (a) an incident plane wave (which corresponds to β = 0),
(b) an incident Gaussian beam with aperture-spot ratio of β = 0.57, and (c) an
incident Gaussian beam with an aperture-spot ratio of β = 1. In all three cases the
value of the ratio of the two aperture radii is α = 0.4. The qualitative behavior of
the three curves is very similar, but there are some differences. The peak intensity
decreases as β is increased. This is to be expected, since a larger β corresponds
to an amplitude distribution in the first aperture that is further from a uniform
amplitude situation. Secondly, as β is increased, the curves shift toward a lower
Fresnel number, i.e., toward the aperture. Finally, the minima are lower for the
larger β cases.

Figure 15 shows plots of the on-axis reduced phase as a function of N2 for
β = 0, 0.57, and 1. The qualitative behavior of the three curves is very similar.
However, as β increases, the curves shift toward lower values of the Fresnel num-
ber, and are shifted downward in numerical value.

14.3.2.3 General case

The intensity and reduced phase of the diffracted field as a function of the scaled
transverse coordinate x/a2 in four different planes behind the second aperture are

Figure 14 The on-axis intensity I(0, z), in units of Io, as a function of the Fresnel num-
ber of the second aperture, N2, for β = 0 (thin line), β = 0.57 (medium thick line), and
β = 1 (thick line), all for α = 0.4.
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Figure 15 The on-axis reduced phase ψ(0, z), in units of π, as a function of the Fresnel
number of the second aperture, N2, for β = 0 (thin line), β = 0.57 (medium thick line),
and β = 1 (thick line), all for α = 0.4.

shown in Fig. 16 for the case α = 0.4. In Fig. 16(a) the Fresnel number is 3.04,
and the plane is a focal plane. The on-axis intensity is maximum, and the phase
near the axis is approximately constant. In Fig. 16(b) the Fresnel number is 2.5,
and the wave is diverging. In Fig. 16(c) the Fresnel number is 1.5, and the wave
has changed from a diverging wave to a converging wave. In Fig. 16(d) the Fresnel
number is 1.04, and the plane is a focal plane. The on-axis intensity is maximum,
and the phase near the axis is approximately constant.

Let us now compare these results to the incident plane wave results. A compar-
ison of Figs. 16(a) and 13(a) shows that the qualitative behavior in the two cases
at the N2 ≈ 3 focal point is very similar. The major difference is a matter of scale:
the curves have similar shapes, but the maximum intensity in the Gaussian beam
case is approximately 7Io instead of the 9Io for the plane wave case. A comparison
of Figs. 16(b) and 13(b) shows that the qualitative behavior in the two cases is very
similar at the location where N2 = 2.5 as well. Similar results are obtained for the
location where N2 = 1.5 when Figs. 16(c) and 13(e) are compared. Finally, the
curves for both the intensity and phase at the N2 ≈ 1 focal point are very similar
as well [see Figs. 16(d) and 13(f)]. As with the N2 ≈ 3 case, the key difference
is the fact that the maximum intensity in the Gaussian beam case is approximately
7Io instead of 9Io for the plane wave case.

14.4 Conclusions

We have investigated the intensity and phase of the diffracted field behind a cir-
cular aperture when a monochromatic plane wave is incident upon it, and when
a Gaussian beam is incident upon it. We have also investigated the intensity and
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Figure 16 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position
along the x-axis for observation planes after the second aperture with Fresnel numbers:
(a) N2 = 3.04, (b) N2 = 2.5, (c) N2 = 1.5, and (d) N2 = 1.04.

phase of the diffracted field in a system of two circular apertures for the same inci-
dent fields.

For the single-aperture system, with a plane wave normally incident, it was
shown that in the neighborhood of a focal point, the phase of the wave approaching
the focal point is that of a converging wave, the phase in the focal plane is planar,
and the phase of the wave exiting the focal point is that of a diverging wave. It was
also shown that the wave becomes more and more divergent as the distance from
the focal point is increased, until a position at which the Fresnel number becomes
even is reached. At such a point the intensity of the wave is zero, and the phase of
the wave is undefined, i.e., singular. It was shown that as the observation point on-
axis moves away from the aperture and passes through a singular point, the nature
of the wave in the neighborhood of the axis changes from that of a diverging wave
to that of a converging wave, i.e., the wave refocuses.

Similar behavior was observed when a Gaussian beam was normally incident
upon a circular aperture, for the case in which the waist of the Gaussian beam
occurs in the plane of the aperture. It was shown that as β (the ratio of the aperture
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radius to the incident beam waist) increases, the focusing effect becomes weaker,
i.e., the values of the intensities at the focal points decrease. This implies that the
more the incident intensity deviates from a constant value (as we had in the plane
wave case), the weaker the focusing effect is.

The focusing effect was also investigated for a plane wave that was normally
incident upon a two-aperture system, for the case in which the separation between
the two apertures is chosen such that N1 = 1. It was observed, by studying the
phase, that the field focuses, defocuses, and refocuses, as in the one-aperture case.
We found that the effect depended crucially on α, the ratio of the radii of the two
apertures. For α = 0.1, the focusing effect was strong, with the intensities at the
focal point approximately 15Io. This was due to the fact that, since N1 = 1, the
intensity and phase of the field incident upon the second aperture were both fairly
constant. As α increases and the intensity incident upon the second aperture varies
across it, the focusing effect becomes weaker (the peak intensities decrease) and the
positions of the focal points shift slightly. Similar behavior was also observed when
a Gaussian beam was normally incident upon a two-aperture system, for the case
in which the separation between the two apertures is chosen such that N1 = 1. As
in the single-aperture Gaussian beam case, it was found that increasing β resulted
in a weaker focusing effect.

14.A Derivation of Equation (7)

It is convenient to consider the real and imaginary parts of the integral on the
left-hand side of Eq. (7) separately. We set

∫ 1

0
eiuξ2/2J0(vξ)ξ dξ = 1

2[C(u, v) + iS(u, v)], (A1)

where

C(u, v) = 2
∫ 1

0
cos(uξ2/2)J0(vξ)ξ dξ, (A2)

S(u, v) = 2
∫ 1

0
sin(uξ2/2)J0(vξ)ξ dξ. (A3)

These two integrals can be expressed in terms of the Lommel functions of two
variables V0(u, v) and V1(u, v),12

C(u, v) =
2
u

[
sin(v2/2u) + sin(u/2)V0(u, v) – cos(u/2)V1(u, v)

]
, (A4)

S(u, v) =
2
u

[
cos(v2/2u) – cos(u/2)V0(u, v) – sin(u/2)V1(u, v)

]
. (A5)
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Upon substituting the right-hand sides of Eqs. (A4) and (A5) in to Eq. (A1), we
find

∫ 1

0
eiuξ2/2J0(vξ)ξ dξ =

i
u

{
e–iv2/2u – eiu/2[V0(u, v) – iV1(u, v)]

}
, (A6)

which is Eq. (7).

14.B Derivation of Equations (32) and (33)

It follows from Eq. (25) that

u
2πN

= 1 + i
β2

Nπ
. (B1)

Upon using Eqs. (6) and (26) we find that

u
2πN

= 1 + i
z

πw2
o /λ

= 1 + i
z

zR
=

√
1 + (z/zR)2eiχ =

w
wo

eiχ, (B2)

where w and χ are given by Eqs. (19) and (21), respectively. Equation (32) is the
reciprocal of Eq. (B2).

It follows from Eq. (25) that

i
(

Nπρ2

a2 –
v2

2u

)
= i

Nπρ2

a2

(
1 –

1
1 + iβ2/Nπ

)
= –

ρ2

a2

β2

1 + iβ2/Nπ

= –
ρ2/w2

o

1 + iz/zR
= –

ρ2

w2 + i
kρ2

2R
, (B3)

where w and R are given by Eqs. (19) and (20). Equation (B3) then gives Eq. (33).
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