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Radiation emitted by an electric dipole consists of traveling and evanescent plane waves. Usually, only the
traveling waves are observable by a measurement in the far field, since the evanescent waves die out over a
length of approximately a wavelength from the source. We show that when the radiation is passed through an
interface with a medium with an index of refraction larger than the index of refraction of the embedding me-
dium of the dipole, a portion of the evanescent waves are converted into traveling waves, and they become
observable in the far field. The same conclusion holds when the waves pass through a layer of finite thick-
ness. Waves that are transmitted under an angle larger than the so-called anti-critical angle uac

(1) are shown
to originate in evanescent dipole waves. In this fashion, part of the evanescent spectrum of the radiation
becomes amenable to observation in the far field. We also show that in many situations the power in the far
field coming from evanescent waves greatly exceeds the power originating in traveling waves. © 2004 Optical
Society of America

OCIS codes: 240.0240, 260.2110.
1. INTRODUCTION
When a monochromatic plane wave, traveling in a me-
dium with index of refraction n1 , is incident on a planar
interface with a medium of index of refraction n2 , n1 ,
then the transmitted wave will be evanescent (exponen-
tially decaying away from the surface) when the angle of
incidence exceeds the critical angle uc . For later refer-
ence we indicate this angle by uc

(2) , and it is given by

sin uc
~2 ! 5 n2 /n1 . (1)

If this transmitted wave encounters a second interface
parallel to the first, with a medium of index of refraction
n3 , then the wave can emerge as either traveling or eva-
nescent. For instance, if n3 . n1 , then the wave trans-
mitted through the layer will be traveling again.

Another example of the occurrence of a critical angle is
when we consider only the waves in medium n1 and me-
dium n3 but with a layer of medium n2 in between. If
n3 , n1 , then there exists another critical angle uc

(1) :

sin uc
~1 ! 5 n3 /n1 . (2)

When the angle of incidence of the wave in medium n1 ex-
ceeds the critical angle uc

(1) , then the emerging wave in
medium n3 is evanescent, no matter the character of the
wave in the layer in between. In any case, upon trans-
mission through an interface or a layer, a traveling wave
can be converted into an evanescent wave, and vice versa.

Usually, an incident wave is traveling. However, in
the established research on near-field optics it has become
evident that evanescent waves play a crucial role.1–7 In
a scanning near-field microscope a probe, consisting of a
fiber tip, is moved over a nanosized sample. The probe
can either emit light for illumination of the sample (emis-
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sion mode) or collect light scattered by the sample (collec-
tion mode). In the emission mode, the light coming out of
the fiber tip contains evanescent waves that are produced
by diffraction through the small aperture (the opening of
the tip),8–10 and in the collection mode, the modes of the
fiber couple to the evanescent modes of the scattered
light. In a different configuration, a sample can be illu-
minated by either a traveling or an evanescent wave, gen-
erated by total internal reflection, and the scattered field
or the fluorescence (in case of a molecule) is observed by a
macroscopic detector in the far field. In this case, the
sample is positioned on an oil-immersion hemispherical
lens. Traveling waves from the field scattered by the
sample exit the lens under an angle of at most the critical
angle for total internal reflection, given by Eq. (1), and
this radiation is sometimes called ‘‘allowed light.’’ It has
long been recognized,11–15 however, that if one seeks to
improve the resolution of such an imaging device into the
nanometer region, then also the waves that appear under
an angle larger than the critical angle have to be ob-
served. Since this radiation has its origin in scattered
evanescent waves, this radiation is given the name ‘‘for-
bidden light.’’ 16

Of particular interest is the radiation emitted by an
electric dipole located in the vicinity of a surface, since
such radiation is emitted by atoms and molecules as fluo-
rescence. This radiation is a superposition of traveling
and evanescent waves. Normally, the traveling waves
are detected in the far field with a macroscopic device
such as a photomultiplier, but since evanescent waves can
be transformed into traveling waves at an interface, it
should be possible to detect traveling waves in the far
field that have their origin in evanescent dipole waves.17

These waves appear as forbidden light under an angle
2004 Optical Society of America
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larger than the critical angle for total internal reflection,
and this radiation has been indeed observed for dipole
radiation.18

We shall consider the situation shown in Fig. 1, where
the dipole d is located on the z axis at a distance H above
the first interface, which is the xy plane. The second
boundary is at z 5 2L, and the indices of refraction are
n1 , n2 , and n3 , assumed to be positive. The dipole, em-
bedded in medium n1 , oscillates harmonically as d(t)
5 Re@d exp(2ivt)#. Without boundaries, the complex
amplitude Es(r) of the dipole (source) field Es(r, t)
5 Re@Es(r)exp(2ivt)# can be represented as an angular
spectrum, according to19–21

Es~r! 5
i

8p2eon1
2 E d2ki

1

b
@ko

2n1
2d 2 ~d – k!k#

3 exp@ik • ~r 2 Hez!#, z Þ H, (3)

with ko 5 v/c. This is a superposition of plane waves
with wave vectors k 5 ki 1 b sgn(z 2 H)ez , and here ki

indicates the component of k parallel to the xy plane.
The integration then runs over the entire ki plane. The
parameter b, which is the z component of k for z . H and
the negative of the z component of k for z , H, is defined
as

b 5 H Ako
2n1

2 2 k i
2 for k i , kon1

iAk i
2 2 ko

2n1
2 for k i . kon1

. (4)

For k i , kon1 , b is real, and the corresponding wave is a
traveling wave. On the other hand, when k i . kon1 , b is
positive imaginary, representing an evanescent wave that
decays exponentially away from the plane z 5 H on both
sides. The corresponding magnetic field is given by

Bs~r! 5 2
i

v
¹ 3 Es~r!, (5)

and it can be verified by inspection that the individual
waves satisfy the source-free Maxwell equations for z
. H and z , H. These partial waves then serve as the
incident field on the boundary with the xy plane, giving
rise to reflection and transmission.

Fig. 1. An electric dipole, with dipole moment d, in a medium
with index of refraction n1 is located a distance H above the xy
plane and on the z axis. The region 2L , z , 0 contains a di-
electric material with index of refraction n2 , and the region z
, 2L is filled with a material with index of refraction n3 .
2. WAVE VECTORS AND POLARIZATION
CONVENTION
For a given incident plane wave with wave vector k, the
resulting reflected and transmitted waves are again plane
waves. Figure 2 shows the various wave vectors, includ-
ing the decay direction in the case that the wave is eva-
nescent. Boundary conditions at z 5 0 and z 5 2L re-
quire that all waves have the same parallel component
ki . It will be convenient to introduce a dimensionless
variable for the magnitude of ki by

a 5 k i /ko . (6)

If the incident wave is traveling, with an angle of inci-
dence u inc , we have a 5 n1 sin uinc . For a wave with
wave vector ka (a 5 r for the reflected wave, t for trans-
mitted, etc.) in medium ni , the wave number is ka
5 koni , and since the parallel part of the wave vector is
determined by the incident field, we have for the z com-
ponent ka,z 5 6ko(ni

2 2 a2)1/2, leaving only the sign to be
determined. We furthermore introduce the abbreviation

n i 5 Ani
2 2 a2, i 5 1, 2, 3, (7)

and it is understood that we take n i to be positive imagi-
nary when a . ni . Parameter b from Eq. (4) then be-
comes b 5 kon1 , so that a wave vector of the source field
is

k 5 H ki 1 kon1ez , z . H

ki 2 kon1ez , z , H
. (8)

The specular (reflected) wave has a wave vector

kr 5 ki 1 kon1ez (9)

corresponding to a wave traveling in the positive z direc-
tion (a , n1) or decaying away from the xy plane
(a . n1). For the two waves in the layer, we have k6

5 ki 6 kon2ez corresponding to waves that travel or de-
cay, as shown in Fig. 2. The transmitted wave travels or
decays in the negative z direction, and therefore its wave
vector is

kt 5 ki 2 kon3ez . (10)

The most convenient way to calculate the reflected and
transmitted fields is by first decomposing the partial
waves of the source field into s- and p-polarized
waves.22,23 Given ki , we define the unit vector for s po-
larization by

es 5
1

k i

ki 3 ez , (11)

which is the same for all waves. For p polarization we
take

ep,a 5
1

ka
ka 3 es , (12)

which depends on the corresponding wave vector ka .
For instance, for the t wave we have

ep,t 5 2
1

n3
@n3~ki /k i! 1 aez#. (13)
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Fig. 2. Angular spectrum source (dipole) waves with wave vectors k emanate from the plane z 5 H. (a) A traveling dipole wave, for
z . H, travels in the positive z direction and for z , H in the negative z direction. When the dipole wave is traveling, so is the specular
wave, represented by wave vector kr . (b) An evanescent dipole wave decays in the positive z direction for z . H and in the negative z
direction for z , H. In this case, the reflected wave (r) is also evanescent, and each wave travels along the xy plane with wave vector
ki . The waves in the layer can be either traveling or evanescent, and also the transmitted wave can be either traveling or evanescent,
traveling or decaying away from the boundary z 5 2L.
It should be noted that for evanescent waves the z compo-
nent of ka is imaginary, and therefore the parallel compo-
nent of ep,a becomes imaginary.

3. FIELDS IN VARIOUS REGIONS
The source field, Eq. (3), for z , H is the incident field on
the surface z 5 0. With the identity

ko
2n1

2d 2 ~d – k!k 5 ko
2n1

2 (
s5s, p

~d – es!es , (14)

we can write each partial wave as a sum of an s-polarized
and a p-polarized wave:

Es~r! 5
iko

8p2eo
E d2ki (

s5s, p

exp~in1h !

n1
~d–es!es

3 exp~ik – r!, z , H. (15)

Here we have set h 5 koH for the dimensionless param-
eter representing the distance between the dipole and the
surface. The polarization vectors es follow from the pre-
vious section, and they are associated with wave vector
k 5 ki 2 kon1ez . For z . H, vector k is the same as the
wave vector for the specular wave, e.g., k 5 kr 5 ki

1 kon1ez , and the source field is

Es~r! 5
iko

8p2eo
E d2ki (

s5s, p

exp~2in1h !

n1
~d – es,r!es,r

3 exp~ikr • r!, z . H. (16)

Each incident partial wave in Eq. (15) couples to a set
of waves as shown in Fig. 2. The amplitudes of the re-
maining waves can be expressed in terms of Fresnel coef-
ficients that determine the amplitude of each wave with
respect to the amplitude of the corresponding partial in-
cident wave. For the reflected wave we then obtain

Er~r! 5
iko

8p2eo
E d2ki (

s5s, p

exp~in1h !

n1
Rs~a!

3 ~d – es!es,r exp~ikr • r!, z . 0,
(17)

with Rs(a) the Fresnel reflection coefficients for
s-polarized and p-polarized waves. The Fresnel coeffi-
cients can be obtained in the usual way by applying the
boundary conditions at z 5 0 and z 5 2L for a given in-
cident partial wave. For reference, we have listed these
in Appendix A for the configuration shown in Fig. 2. The
total field in z . H is then the sum of Eqs. (16) and (17).
We write this as

E~r! 5
iko

8p2eo
E d2ki

1

n1
exp@i~ki • r 1 n1koz !#

3 (
s5s, p

@exp~2in1h !d – es,r

1 exp~in1h !Rs~a!d – es#, z . H. (18)

The field in the region 0 , z , H is the sum of Eqs.
(15) and (17), and the field in the layer 2L , z , 0 can
be constructed by using the appropriate Fresnel coeffi-
cients. We shall omit the explicit expressions here. The
transmitted field in the region z , 2L can be expressed
as
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E~r! 5
iko

8p2eo
E d2ki

1

n1
exp@i~ki • r 2 n3koz 1 n1h !#

3 (
s5s, p

Ts~a!~d – es!es,t , z , 2L, (19)

with Ts(a) the Fresnel transmission coefficients.

4. ASYMPTOTIC APPROXIMATION
The radiation is detected at a field point with spherical co-
ordinates (r, u, f ) and with r large (far field). From
Eqs. (18) and (19) we can derive the far-field approxima-
tions for the fields in z . H and z , 2L, respectively,
with the method of stationary phase.24–26 Both expres-
sions are integrals over ki . In the method of stationary
phase it is asserted that the major contribution for r large
and u and f fixed comes from the neighborhood of a point
in the ki plane, say, ki,o , where the phase is stationary.
For an arbitrary function f(ki) we then obtain the
asymptotic approximation

E d2ki

1

kon i
f~ki!exp@i~ki • r 1 kon iuzu!#

' 2
2pi

r
f~ki,o!exp~inikor !, i 5 1 or 3, (20)

with n i given by Eq. (7) and ki,o 5 koni sin u er . Vector
er is the radial unit vector in the xy plane corresponding
to the direction of r̂, e.g., er 5 ex cos f 1 ey sin f. The
magnitude of ki,o is k i,o 5 koni sin u, and since in medium
ni we have n i 5 niu cos uu, we see that the z component of
the corresponding traveling plane wave equals koni cos u.
The wave vector of this partial wave in the angular spec-
trum is therefore konir̂. This yields the clear interpreta-
tion that the main contribution to the field comes from the
traveling plane wave that travels exactly in the direction
r̂ of the detector.

The far-field approximation to Eq. (18) is found to be

E~r! 5
ko

2

4peor
exp@in1~kor 2 h cos u!#

3 @~d – ef!ef 1 ~d – eu!eu#

1
ko

2

4peor
exp@in1~kor 1 h cos u!#@Rs~ao!

3 ~d – ef!ef 2 Rp~ao!~d – eu 1 2 sin ud – ez!eu#,

(21)

in terms of the spherical unit vectors ef and eu . We
shall write an equal sign instead of '. The Fresnel re-
flection coefficients have to be evaluated at the value of a
at the critical point, which is ao 5 k i,o /ko 5 n1 sin u.
The first term on the right-hand side is the source wave,
which travels directly from the dipole toward the detector,
and the second term is the reflected wave. The difference
in travel distance is seen to be 2H cos u, indicating that
the reflected wave seems to come from a mirror image of
the dipole at a distance H below the interface z 5 0 and
on the z axis. This is even clearer if we write the part
with the reflection coefficients as

Rs~ao!~d – ef!ef 2 Rp~ao!~d – eu 1 2 sin ud – ez!eu

5 2Rs~ao!~d̃ – ef!ef 1 Rp~ao!~d̃ – eu!eu , (22)

where the mirror dipole d̃ is defined as

d̃ 5 d' 2 di , (23)

given that d 5 d' 1 di . In the case of a perfectly con-
ducting substrate, we would have Rs 5 21 and Rp 5 1
for every angle of incidence, showing even more the re-
semblance to the source term.

For the transmitted field we find the asymptotic ap-
proximation to be [from Eq. (19)]

E~r! 5 2
ko

2n3 cos u

4peor
exp@i~kon3r 1 hn1,o!#

1

n1,o

3 FTs~ao!~d – ef!ef 2
1

n1
Tp~ao!

3 ~n1,od – er 1 n3 sin ud – ez!euG . (24)

Here the value of a in the critical point is ao 5 n3 sin u,
and the Fresnel transmission coefficients have to be
evaluated at this ao . Also, the parameter n1 at the criti-
cal point appears in this result:

n1,o 5 An1
2 2 n3

2 sin u. (25)

It seems that for certain u, the factor 1/n1,o in Eq. (24)
could present a problem. However, the transmission co-
efficients Ts(a) are proportional to n1 [Eqs. (A5) and
(A6)], and therefore the 1/n1,o in Eq. (24) cancels exactly.

5. INTENSITY DISTRIBUTION
The magnetic field for r large can be obtained from Eqs.
(21) and (24) by taking the curl, as in Eq. (5), although it
appears easier to take the curl in Eqs. (18) and (19), and
then make the asymptotic approximations for the result-
ing angular spectrum representations of the magnetic
field. We thus obtain the relation

B~r! 5
ni

c
r̂ 3 E~r!, i 5 1 or 3. (26)

The Poynting vector

S~r! 5
1

2mo
Re E~r! 3 B~r!* , (27)

and the power per unit solid angle, dP/dV 5 r2S(r) • r̂,
can then be evaluated for the far field with the results
from Section 4.

For the dipole moment we write d 5 ud, with d com-
plex and the unit vector u normalized as u – u* 5 1. The
intensity distribution will be normalized as

dP

dV
5 Po A~u, f !, (28)

with
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Po 5
v4

12peoc3 d – d* . (29)

This Po is the power radiated by a dipole d in free space.27

For z . H we then find

A~u, f ! 5
3n1

8p
ueu • u 1 eu • ũRp~n1 sin u!

3 exp~2in1h cos u!u2 1
3n1

8p
uef • u

3 @1 1 Rs~n1 sin u!exp~2in1h cos u!#u2,

(30)
where ũ 5 u' 2 ui , and for z , 2L we obtain

A~u, f ! 5
3n3

3

8p
cos2 uFUTs~n3 sin u!

n1,o
U2

uef • uu2

1
1

n1
2 UTp~n3 sin u!

n1,o
U2

3 un1,ou–er 1 n3 sin u u–ezu2G
3 exp@22h Im~n1

2 2 n3
2 sin2 u!1/2#.

(31)
A typical intensity distribution pattern is shown in Fig. 3.
It shows the familiar lobe structure in z . H, which is
due to interference between the waves emitted directly by
the dipole and the reflected waves.28–31 In the region
z , 2L, there is not such a structure since there is no in-
terference in this region. A similar result was derived in
Ref. 18 for a single interface.

6. ANTI-CRITICAL ANGLE OF THE FIRST
KIND
It follows from the method of stationary phase that for a
given observation direction r̂, effectively only one partial
wave of the angular spectrum contributes to the emitted
power in that direction. This wave has wave vector
kon1r̂ for an observation point in z . H and kon3r̂ for
detection in z , 2L. Since each wave in Fig. 2(a) has

Fig. 3. Polar diagram of the intensity distribution A(u, f ).
The dashed line indicates the xy plane, and the vertical axis is
the z axis. The graph represents A(u, f ) as the distance to the
origin, given the polar angle u. The parameters are n1 5 1.41,
n2 5 n3 5 1, and h 5 4p. The orientation of the dipole is
taken as the spherical unit vector e1 5 2(ex 1 iey)/A2, repre-
senting a dipole with a dipole moment that rotates counterclock-
wise in the xy plane. For this case, A(u, f ) has no f depen-
dence.
the same ki , and thereby the same a, we see that
a 5 n1 sin uinc 5 n3 sin ut , relating the angle of incidence
u inc and the angle of transmission u t . For detection in
z , 2L, angle u t is in the range 0 < u t , p/2. Given u t ,
the angle of incidence follows from sin uinc
5 (n3 /n1)sin ut . But if n3 . n1 , this equation does not
necessarily have a solution. Apparently, there exists a
transmission angle uac

(1) , given by

sin uac
~1 ! 5 n1 /n3 , (32)

which has the significance that if uac
(1) , u t , p/2, there is

no corresponding u inc . However, there is a corresponding
a and therefore a corresponding incident wave. For uac

(1)

, u t , p/2, the values of a are in the range n1 , a
, n3 , since a 5 n3 sin ut , and this is in the evanescent
region of the angular spectrum of the dipole. Conse-
quently, any radiation that is detected at angle u t in the
range uac

(1) , u t , p/2 originates from evanescent waves.
From a different point of view, when angle u t is increased
from zero, the angle of incidence also increases, up to the
point where it reaches p/2. At this point, u t 5 uac

(1) , and
a further increase of u t then yields a corresponding eva-
nescent incident wave. This situation is exactly the op-
posite of total internal reflection, where the angle of inci-
dence u inc reaches a critical value uc

(1) , given by Eq. (2),
beyond which the transmitted wave becomes evanescent.
Therefore we call uac

(1) the anti-critical angle.
For detection in z , 2L, the dependence on the dis-

tance h between the surface and the dipole is through the
factor exp@22h Im(n1

2 2 n3
2 sin2 u)1/2# in Eq. (31). Since

sin u 5 sin ut , we see that this factor equals unity for 0
< u t < uac

(1) , and therefore there is no h dependence in
the radiation pattern. In this range the corresponding
dipole waves are traveling. Since traveling waves have
the same amplitude everywhere, the travel distance be-
tween the dipole and the surface is irrelevant. On the
other hand, for u t . uac

(1) this factor gives an exponential
dependence on h, reflecting the fact that the correspond-
ing evanescent dipole waves decay exponentially from
some finite value at z 5 H to zero in the negative z direc-
tion. As a result, the detected power for u t . uac

(1) dimin-
ishes rapidly with increasing h. This is illustrated in
Fig. 4, where h 5 4p, and it is seen that almost no radia-
tion appears in u t . uac

(1) .

Fig. 4. Radiation pattern A(u, f ) for n1 5 1, n2 5 n3 5 1.41,
h 5 4p, and u 5 e1 . The anti-critical angle is uac

(1) 5 45°, indi-
cated by the dashed line. The fraction of evanescent power for
this case is f 5 0.56%.
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7. POWER OF THE EVANESCENT WAVES
For the radiation in z . H we have 0 < u , p/2, and the
corresponding range of a is 0 < a , n1 , because a
5 n1 sin uinc and u 5 u inc . This shows that exactly all
traveling dipole waves contribute to the radiation in
z . H, and there is no contribution from evanescent
waves here. For detection in z , 2L the range of a is
0 < a , n3 , since a 5 n3 sin ut . If n3 , n1 , the corre-
sponding dipole waves are traveling, and there is no con-
tribution from evanescent waves. For values of a in the
range n3 , a , n1 , there are still traveling dipole waves
incident on the surface z 5 0, but the angle of incidence is
larger than the critical angle uc

(1) , Eq. (2), and therefore
the transmitted waves in medium n3 are evanescent, and
they do not appear in the far field as radiation. Only for
n3 . n1 can we have evanescent dipole waves appearing
in the far field, in z , 2L, which are converted by the
layer into traveling waves.

In order to quantify the relative contribution of the eva-
nescent waves to the power transmitted through the
layer, we consider the integrated power. To this end, we
first notice that the f dependence of the intensity distri-
bution A(u, f ) is purely geometrical since it enters only
through the unit vectors eu , ef , and er . The u depen-
dence, on the other hand, is essential, as follows from the
fact that sin u appears in the arguments of the Fresnel
coefficients. Another u dependence enters through dV
5 sin u du df. We therefore introduce

B~u! 5 sin uE
0

2p

dfA~u, f !, (33)

in terms of which the power per unit polar angle, emitted
in the u direction, becomes

dP

du
5 Po B~u!. (34)

Performing the integrations over f then yields

B~u! 5
3
8 n1 sin u~1 2 uuzu2!

3 @ u1 1 Rs~n1 sin u!exp~2in1h cos u!u2

1 cos2 uu1 2 Rp~n1 sin u!exp~2in1h cos u!u2#

1
3
4 n1 sin3 uuuzu2

3 u1 1 Rp~n1 sin u!exp~2in1h cos u!u2, (35)

for z . H, and

B~u! 5
3n3

3

8n1
2

sin u cos2 u

un1
2 2 n3

2 sin2 uu
@~1 2 uuzu2!

3 ~n1
2uTs~n3 sin u!u2

1 un1
2 2 n3

2 sin2 uuuTp~n3 sin u!u2!

1 2uuzu2n3
2 sin2 uuTp~n3 sin u!u2#

3 exp@22h Im~n1
2 2 n3

2 sin2 u!1/2#, (36)

for z , 2L. It is interesting to notice that the depen-
dence on the dipole orientation vector u enters only as
uuzu2, with 0 < uuzu2 < 1, in contrast to the result for
A(u, f ), which depends on the three Cartesian compo-
nents of u separately.

The transmitted power due to traveling dipole waves
ends up in the cone 0 < u t < uac

(1) and is given by

Ptr 5 PoE
p2uac

~1 !

p

duB~u!, (37)

whereas the contribution from evanescent waves is

Pev 5 PoE
p/2

p2uac
~1 !

duB~u!. (38)

As a measure for the relative contribution of the evanes-
cent waves, we define

f 5
Pev

Pev 1 Ptr
3 100%. (39)

The quantities Pev and Ptr are computed by numerical in-
tegration. For parameters as in Fig. 4, with h 5 4p, the
value of f is found to be 0.56%, indicating that only a very
small fraction of the power is due to evanescent waves in
this case. An example of just the opposite situation is il-
lustrated in Fig. 5, where h 5 0. Here we find f
5 95%, and the figure clearly shows that nearly all in-
tensity is emitted at a transmission angle larger than
uac

(1) .
In order to illustrate the significance of the evanescent

waves, we consider a single n1 2 n3 interface (this affects
only the Fresnel coefficients, which simplify considerably)
and h 5 0. Then it can be shown that Pev and Ptr are
functions of n1 /n3 only, with both an overall factor of n3 .
For a dipole embedded in a medium with index of refrac-
tion n3 , the total power emitted in all directions is n3Po .
Figure 6 shows Pev /(n3Po), Ptr /(n3Po), and f as functions
of n1 /n3 for a dipole in the xy plane. Notice that the in-
dependent variable n1 /n3 equals sin uac

(1) . At approxi-
mately n1 /n3 ' 0.8, we have Pev 5 Ptr , and for
n3. 1.25n1 the power of the evanescent waves exceeds
the power of the traveling waves. Figure 7 shows the

Fig. 5. Polar diagram of the intensity distribution B(u) for n1

5 1, n2 5 n3 5 4.47, for which uac
(1) 5 30°, and h 5 0. The di-

pole unit vector here is u 5 ez , and f 5 95%. We see that al-
most all power in z , 2L comes from evanescent waves, and it is
interesting to notice that the emission of traveling waves in z
. H is negligible.
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same graphs for a dipole along the z axis. Here we see
that for almost all values of n1 /n3 the evanescent waves
dominate. Moreover, there is a large region where
Pev /(n3Po) . 1; e.g., the power of the evanescent waves
alone is larger than the total power that would be emitted
by a dipole in medium n3 and without any interface.

For the case of a single interface and h 5 0, the value
of Pev can be obtained in closed form. Evaluating the in-
tegral in Eq. (38) yields

Pev /~n3Po! 5
1

2A1 2 r

1

~1 1 r !2 $~1 2 uuzu2!

3 @3 2 ~1 2 r2!~1 2 r ! 2 rh~r !#

1 2uuzu2@1 2 r2 2 3r 1 h~r !#%, (40)

where r 5 n1
2/n3

3, and the function h(r) is defined as

Fig. 6. Graphs of P tr /(n3Po), Pev /(n3Po) and the corresponding
fraction f, as a function of n1 /n3 for a dipole along the z axis.

Fig. 7. Same as Fig. 6 but for a dipole in the xy plane. Of in-
terest here is that the evanescent power can exceed the power of
a free dipole in medium n3 .

Fig. 8. Same as Fig. 7 but for h 5 0.00314. Already for this
small value of h, we see that Pev /(n3Po) falls to zero for n1 /n3
→ 0.
h~r ! 5
3r

A1 2 r2
lnS 1 1 A1 2 r2

r
D . (41)

For n3 @ n1 we have r → 0, and with h(0) 5 0 this gives
Pev 5 n3Po , showing that for a dense medium n3 , rela-
tive to n1 , the power of the evanescent waves is the same
as the power of a free dipole in medium n3 , for which all
waves are traveling. It should be noted that this conclu-
sion strictly holds for h 5 0 only. The h dependence of
B(u) in Eq. (36) comes in through the factor
exp@22h Im(n1

2 2 n3
2 sin2 u)1/2#, which can also be written

as exp@22hn3 Im(sin2 uac
(1) 2 sin2 ut)

1/2#. Since sin uac
(1)

, sin u for uac
(1) , u t , p/2, the exponent is nonzero; and

for any finite h, an increasing n3 makes this factor van-
ish. Therefore Pev /(n3Po) → 0 for h Þ 0 and r → 0.
This feature is illustrated in Fig. 8.

8. ANTI-CRITICAL ANGLE OF THE
SECOND KIND
The anti-critical angle of the first kind is the transmission
angle at which the incident wave turns evanescent. We
now consider the waves in the layer with index of refrac-
tion n2 . When these are traveling waves with angle u2
with respect to the normal, then we have sin u2
5 (n3 /n2)sin ut , given u t . When n3 . n2 , u2 reaches p/2
at the transmission angle uac

(2) given by

sin uac
~2 ! 5 n2 /n3 . (42)

Then for uac
(2) , u t , p/2 the waves in the layer are eva-

nescent, which greatly reduces the transmission with in-
creasing L. It should be noted that this phenomenon is
independent of the nature of the incident dipole waves.
Also, we can have two anti-critical angles, with either
uac

(1) , uac
(2) or uac

(1) . uac
(2) , or we can have only uac

(1) or only
uac

(2) , or none at all, depending on the relative values of
n1 , n2 and n3 .

Figure 9 shows the effect of the second anti-critical
angle for the case of uac

(1) , uac
(2) . For 0 < u t , uac

(1) , the
dipole, layer and transmitted waves are all traveling.
For uac

(1) , u t , uac
(2) , the dipole waves are evanescent but

the waves in the layer are still traveling, and for uac
(2)

, u t , p/2 both the dipole and the layer waves are eva-

Fig. 9. Graph of the intensity distribution A(u, f ), illustrating
the effect of the second critical angle uac

(2) . The parameters are
n1 5 1, n2 5 1.73, n3 5 2, h 5 0, l 5 2p and u 5 e1 . Here we
have uac

(1) 5 30°, uac
(2) 5 60°, and f 5 75%. We see that owing to

the layer thickness, almost no power is emitted in the range
uac

(2) , ut , p/2.
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nescent, with, of course, the transmitted waves still trav-
eling. In Fig. 9 we have l 5 2p, with l 5 koL the di-
mensionless layer thickness, so we have a layer thickness
of one wavelength of the incident radiation (n1 5 1). We
see that the transmission in uac

(2) , u t , p/2 has already
become negligible for this relatively small value of l. It is
interesting to notice that in the region uac

(1) , u t , uac
(2)

there seems to be an interference structure. This cannot
be the case, however, because for a given angle u t there is
only a single wave, according to the stationary-phase in-
terpretation. From Eqs. (A5) and (A6) we see that the
Fresnel transmission coefficients have a factor of
exp(2in2,) in the denominator. This can also be written
as exp@2in3,(sin2 uac

(2) 2 sin2 ut)
1/2#. For u t , uac

(2) , the ex-
ponent is imaginary, leading to oscillations with varying
u t . This, of course, is a reflection of the interference of
the waves with wave vectors k2 and k1 , representing the
traveling waves in the layer [Fig. 2(a)], and this affects
the Fresnel transmission coefficients.

9. CONCLUSIONS
Dipole radiation is a superposition of traveling and eva-
nescent plane waves when represented by an angular
spectrum. For a dipole embedded in a medium with in-
dex of refraction n1 , only the traveling waves contribute
to the radiation in the far field, and the evanescent waves
remain unobserved. When the radiation passes through
an interface or a layer, as in Fig. 1, a portion of the eva-
nescent waves will be converted into traveling waves if
n3 . n1 , and they become observable in the far field. We
have shown that there exists a transmission angle uac

(1)

that has the significance that any radiation detected in
uac

(1) , u t , p/2 has its origin in evanescent dipole waves.
Partial angular spectrum waves with their ki vector in
the ring kon1 , k i , kon3 in the ki plane contribute to
this phenomenon, and the observation direction r̂ of the
emanating traveling wave determines uniquely the corre-
sponding ki in this ring. In this fashion, the evanescent
field of the dipole can be partially observed in the far field,
and this has been seen experimentally.18 In more-
contemporary measurements, the sample is placed in air
or in an aqueous solution with low index of refraction on
an oil-immersion hemispherical lens. In this geometry,
the radiation in the far field exits the lens under normal
incidence, and the intensity distribution should greatly
resemble the results presented in this paper for z , 0.

We have also shown that the total power in the far field
due to evanescent dipole waves can greatly exceed the
contribution of the traveling waves ( f 5 95% in Fig. 5)
and that this power can exceed the power by a free dipole
in medium n3 . Finally, when transmission through a
layer is considered, a second anti-critical transmission
angle uac

(2) appears when n3 . n2 . For u t . uac
(2) , the

waves in the layer become evanescent, and hardly any ra-
diation will appear in this region of observation when the
layer thickness L is not too small.

APPENDIX A
The Fresnel reflection and transmission coefficients de-
pend on the three indices of refraction, the dimensionless
layer thickness , 5 koL, and the variable a, representing
in dimensionless form the value of k i . These Fresnel co-
efficients are most conveniently expressed in terms of the
three vi from Eq. (7). With the notation

Ls 5 ~n1 1 n2!~n2 1 n3! 1 ~n1 2 n2!~n2 2 n3!

3 exp~2in2, !, (A1)

Lp 5 ~n2
2n1 1 n1

2n2!~n3
2n2 1 n2

2n3!

1 ~n2
2n1 2 n1

2n2!~n3
2n2

2 n2
2n3!exp~2in2, !, (A2)

we have

Rs~a! 5
1

Ls
@~n1 2 n2!~n2 1 n3! 1 ~n1 1 n2!~n2 2 n3!

3 exp~2in2, !#, (A3)

Rp~a! 5
1

Lp
@~n2

2n1 2 n1
2n2!~n3

2n2 1 n2
2n3! 1 ~n2

2n1

1 n1
2n2!~n3

2n2 2 n2
2n3!exp~2in2, !#, (A4)

Ts~a! 5
4n1n2

Ls
exp@i~n2 2 n3!,#, (A5)

Tp~a! 5
4n1n2n1n2

2n3

Lp
exp@i~n2 2 n3!,#. (A6)
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