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Abstract. The optical near field of a localized source has been studied by
means of the angular spectrum representation of the electromagnetic Green’s
tensor. This Green’s tensor can be expressed in terms of four auxiliary
functions, which depend on the field point through the dimensionless radial
distance q to the source, or origin of coordinates, and the polar angle � with the
z axis. Each function separates into a part containing travelling (radiative)
waves and a part which is a superposition of evanescent (decaying) waves. We
have derived series expansions in q of the four functions, both for the travelling
and for the evanescent parts. It is shown that the travelling waves are finite at
the origin of coordinates, and that all singular behaviour of the radiation field is
governed by the evanescent waves. It is illustrated numerically that the series
expansions are applicable up to about five wavelengths from the origin. In order
to extend the range to also cover larger values of q, we have derived series
expansions of the auxiliary functions which converge rapidly near the x–y plane,
and a full asymptotic expansion with the z coordinate as the large variable.
Finally, from the properties of the Taylor coefficients we have derived simple
new integral representations for the auxiliary functions.

1. Introduction
Nanoscale technology appears to be emerging as one of the most promising new

technological advances in recent years. In nanoscale structures and devices the
spatial variations are well below an optical wavelength, and it has become
imperative to study optical phenomena, and in particular radiation from atoms and
molecules, on a similar length scale. This research area of near-field optics, or
nano-optics, has evolved considerably over the last decade, in particular now that it
has become feasible to measure light intensities within a sub wavelength range of
the source with optical fibre tips [1–6]. At such short distances from the radiating
atom or molecule, the electromagnetic field is dominated by the evanescent
(decaying) modes, rather than by the propagating modes, which are usually
observed in the far field with macroscopic devices. It has become experimentally
and theoretically necessary to study the properties of evanescent radiation in the
close vicinity of the source.

The appearance of evanescent waves in the radiation field of a localized source
is most evident when the electric field is expressed as a superposition of transverse
plane waves, known as the angular spectrum representation. For such a
decomposition of the radiation field, one needs a reference surface, taken to be
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the x–y plane, and usually this is a physical boundary such as a substrate on which
molecules are deposited. Let K be the wave-vector of an individual partial wave of
angular frequency !. For later convenience we shall indicate the magnitude of K,
the wavenumber, by k0. The dispersion relation of free space then requires the
relation !¼ ck0. On the other hand, with kk the component of K in the x–y plane,
assumed to be real valued and given, this determines the z component of K, apart
from a minus sign, since K2

z ¼ k
2
0 � k

2
k. For kk < k0 we have Kz real, and therefore

K is real. This situation corresponds to an ordinary travelling plane wave with
wave-vector K. On the other hand, when kk > k0, the value of Kz becomes
imaginary. In this case, the wave still travels in the x–y plane, in the direction of kk

but now it decays exponentially in the þ z and �z directions. These are the
evanescent waves. In the angular spectrum representation, both types of wave
appear simultaneously, with the evanescent waves dominating the near field
whereas the travelling waves determine the radiation in the far field.

Traditionally, the far field has received most attention because of its relation to
experimental observations. The radiative (far) field can be obtained in a very
general way from an angular spectrum representation with the method of
stationary phase [7, 8]. This procedure yields an asymptotic approximation for
the electromagnetic radiation field at large distances from the source, and it can be
shown that this far field is determined by the travelling modes of the angular
spectrum. An exception to this is when the observation direction is parallel to the
x–y plane, in which case the critical-point wave-vector K lies on the borderline in
the kk plane separating the travelling and evanescent waves in the angular
spectrum (we then have kk ¼ k0). For this propagation direction, the evanescent
waves do not decay and contribute equally to the far field, compared with the
travelling waves. A second exception is for propagation perpendicular to the x–y
plane (K along the z axis). It can be shown that for this direction the evanescent
waves also survive in the far field [9–11].

In this paper we present results for the travelling and evanescent parts of the
near field, and we show explicitly how the near field at very short distances from the
source is dominated by the evanescent waves. We also derive series expansions for
larger distances, which are complementary to the near-field results. We show that
there is a region of medium range where both approaches yield the same result.

2. Angular spectrum
The electric field E(r) of radiation emitted by a current density j(r) can be

expressed most compactly with the aid of the electromagnetic Green’s tensor g(r),
according to [12, 13]

EðrÞ ¼
i!�0

4�

Z
dr0gðr� r0Þ � jðr0Þ; ð1Þ

in the Fourier angular frequency domain. We shall suppress the ! dependence of
the various quantities throughout. When the source is an atom or molecule located
at the origin of coordinates, then the current density represents the dipole moment
d, and equation (1) simplifies to

EðrÞ ¼
k20

4�"0
gðrÞ � d: ð2Þ
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Hence all spatial dependence is incorporated in the Green’s tensor. Therefore,
rather than considering the field E(r) itself, we shall study the travelling and
evanescent parts of the Green’s tensor.

The representation of the Green’s tensor in configuration space is given by [14]

gðrÞ ¼ �
4�

3k20
	ðrÞI þ I þ

1

k20
HH

� �
eik0r

r
; ð3Þ

where I indicates the unit dyad. The term proportional to 	(r) gives a contribution
to the field E(r), which is directly proportional to the current density at the same
location, according to equation (1). This so-called self-field is sometimes neglected
in the literature but, since this term could be considered as the ultimate near field,
we shall retain it here. Also, it can be shown that this term has to be included for
mathematical consistency [15, 16], especially when adopting transformations to
reciprocal space or when employing angular spectrum representations [17].
Equation (3) for g(r) has, apart from the delta function, a singularity at r¼ 0, and
when substituted into equation (1) this leads to a singularity at r 0 ¼ r, which has
to be integrated over when the field point r is inside the source region. It is
understood that this integral is performed as a principal-value integral in the
following manner; a small sphere with radius " and centred at r is excluded from
the integration region and, after evaluating the integral, we take "# 0. It can be
shown that, if this limit is taken in a different way (by taking a cylinder instead of a
sphere, for instance), then the delta function contribution in equation (3) might be
different [18–21].

The angular spectrum representation of the Green’s tensor g(r) follows from
Weyl’s representation of the scalar Green’s function [22, 23]:

eik0r

r
¼

i

2�

Z
dkk

1



eiK�r: ð4Þ

Here, K ¼ kk þ 
 sgn ðzÞez; and parameter 
 is defined as 
 ¼ ðk20 � k
2
kÞ

1=2 for
kk < k0 and as 
 ¼ iðk2k � k

2
0Þ

1=2 for kk > k0. Then we substitute the right-hand side
of (4) into (3) and work out the derivatives. This gives

gðrÞ ¼ �
4�

k20
	ðrÞezez þ

i

2�

Z
dkk

1



I�

1

k20
KK

� �
eiK�r; ð5Þ

which is the angular spectrum representation of g(r). As mentioned in the
introduction, this superposition contains travelling waves (
 real) and evanescent
waves (
 imaginary). The additional delta function comes from differentiating
sgn(z) twice with respect to z. It should be noted that this delta function does not
represent the self-field, since it is different from the delta function in the Green’s
tensor (3).

3. Auxiliary functions
Representation (5) is a two-dimensional integral representation, with the

integration running over the kk plane. Whether a wave is travelling or evanescent
depends only on kk; the magnitude of kk; so there is no need to retain the
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dependence of the partial waves on the direction of kk. For simplicity of notation,
we shall use dimensionless variables. In particular we set ĝgðrÞ ¼ gðrÞ=k0. After
integrating over the polar angle in the kk plane, representation (5) takes the form

ĝgðrÞ ¼ �
4�

k30
	ðrÞezez þ

1

2
ðIþ ezezÞMaðq; �Þ þ

1

2
ðI� ezez � 2r̂rkr̂rkÞMbðq; �Þ

þ
1

2
sgn ðzÞ ðr̂rkez þ ezr̂rkÞMcðq; �Þ þ

1

2
ðI� 3ezezÞMdðq; �Þ; ð6Þ

with r̂rk the radial unit vector in the x–y plane, q¼ k0r the dimensionless distance
between the field point r and the origin, and � the polar angle of r with the z axis.
The four auxiliary functions Mi(q, �) contain the remaining integration over kk;
and they are defined explicitly by

Maðq; �Þ ¼ i

Z 1

0

d



̂

J0ð�Þ e

i
̂
j�j; ð7Þ

Mbðq; �Þ ¼ �i

Z 1

0

d
3


̂

J2ð�Þ e

i
̂
j�j; ð8Þ

Mcðq; �Þ ¼ 2

Z 1

0

d 2J1ð�Þ e
i
̂
j�j; ð9Þ

Mdðq; �Þ ¼ i

Z 1

0

d 
̂
 J0ð�Þ e
i
̂
j�j; ð10Þ

where Jn(x) are Bessel functions. Here we have introduced 
̂
¼ 
/k0, the
dimensionless z coordinate �¼ k0z, which is �¼ q cos �, and �¼ q sin � as the
dimensionless distance to the z axis. The new integration variable is ¼ kk=k0, so
that the integration range [0, 1) represents the superposition of travelling waves,
and 1 <  < 1 covers the evanescent waves. The first two integrals have a
singularity at ¼ 1 owing to the factor 1/
̂
; but this singularity is integrable from
each side.

On the other hand, the Green’s tensor is given by equation (3). When we work
out the derivatives in this expression and use the notation q¼ k0r, this becomes

ĝgðrÞ ¼ �
4�

3k30
	ðrÞIþ 1þ

i

q
�

1

q2

� �
I� 1þ

3i

q
�

3

q2

� �
r̂rr̂r

� �
eiq

q
; ð11Þ

with r̂r ¼ r=r: Obviously, this should be identical to equation (6) for ĝgðrÞ: With
r̂r ¼ r̂rk sin � þ ez cos � we can compare the coefficients of the dyadic parts in both
expressions. This leads to a set of four equations, which can be solved for the four
functions Mi(q, �). We find that

Maðq; �Þ ¼
eiq

q
; ð12Þ

Mbðq; �Þ ¼ sin2 � 1þ
3i

q
�

3

q2

� �
eiq

q
; ð13Þ

Mcðq; �Þ ¼ �jsin ð2�Þj 1þ
3i

q
�

3

q2

� �
eiq

q
; ð14Þ

Mdðq; �Þ ¼ �
8�

3k30
	ðrÞ þ

1

q
� i

� �
eiq

q2
þ cos2 � 1þ

3i

q
�

3

q2

� �
eiq

q
: ð15Þ
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We recognize Ma(q, �) as the scalar Green’s function (4), apart from a factor k0.
The functions Mb(q, �) and Mc(q, �) have identical dependences on q, and they
only differ in the overall angular dependence. Function Md(q, �) has a delta
function term and, when added to the delta function in the representation (6), we
obtain exactly the self-field term in equation (3).

4. The splitting
Each of the four functions has a travelling and an evanescent part, and with

equation (6) this determines the travelling part ĝgðrÞtr and evanescent part ĝgðrÞev of
the Green’s tensor. It should be noted that the delta functions in equations (5) and
(6) are neither travelling nor evanescent since only the integral over kk in
equation (5) splits into travelling and evanescent components. So the Green’s
tensor can be written as

ĝgðrÞ ¼ �
4�

k30
	ðrÞezez þ ĝgðrÞtr þ ĝgðrÞev: ð16Þ

For the evanescent parts we restrict the integration ranges in equations (7)–(10) to
1 <  < 1. We then note that the parameter 
̂
 is imaginary, and all factors of i
cancel. Therefore, the evanescent waves are pure real. Vice versa, this implies that
the imaginary part of the Green’s tensor consists entirely of travelling waves.
When we take the imaginary parts of equations (12)–(15) we find explicitly that

ImMaðq; �Þ½  ¼
sin q

q
; ð17Þ

ImMbðq; �Þ½  ¼ �
sin2 �

q

3

q2
� 1

� �
sin q�

3 cos q

q

� �
; ð18Þ

Im Mcðq; �Þ½  ¼
jsin ð2�Þj

q

3

q2
� 1

� �
sin q�

3 cos q

q

� �
; ð19Þ

ImMdðq; �Þ½  ¼ cos2 �
sin q

q
þ ð1� 3 cos2 �Þ

1

q2
sin q

q
� cos q

� �
: ð20Þ

From the viewpoint of the near field, we should consider these functions in the
neighbourhood of q¼ 0. With a Taylor expansion it follows easily that all four
contributions are finite at q¼ 0. More precisely, ImMaðq; �Þ½  ¼ 1þOðq2Þ;
ImMdðq; �Þ½  ¼ 1=3þOðq2Þ; and the other two are both O(q2) around q¼ 0. The
corresponding part of the Green’s tensor is then

Im ĝgðrÞtr
� �

¼ 2
3
IþOðq2Þ: ð21Þ

It will be shown below that the real part of ĝgðrÞtr is O(q); so the first term on the
right-hand side of equation (21) also gives the leading term in the near field of the
total travelling part, in agreement with [9].

Since the imaginary parts of functions Mi(q, �) are pure travelling, we only
need to consider the splitting of the real parts. When we take the real part of
equation (7), restrict the integration range to 0 �  < 1 and make a change in
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variables according to u ¼ ð1� 2Þ
1=2 , we obtain the representation

Re Maðq; �Þtr
� �

¼ �

Z 1

0

du J0 �ð1� u2Þ1=2
� �

sin ðuj�jÞ: ð22Þ

The advantage of the change in variables is that the singularity in the integrand
near ¼ 1 has disappeared. The dependence on the spatial coordinates q and �
enters through � ¼ q sin � in the argument of the Bessel function and through
� ¼ q cos �. For the evanescent part we set u ¼ ð2 � 1Þ1=2, which then gives

Maðq; �Þev ¼

Z 1

0

du J0 �ð1þ u2Þ1=2
� �

e�uj�j: ð23Þ

Similar expressions hold for the other three integrals. Owing to the complicated
appearance of q and � it is not obvious what the behaviour of equations (22) and
(23) is near the origin.

5. Travelling part
In order to reveal the near-field properties of Re Maðq; �Þ

tr
� �

, we make a Taylor
expansion of equation (22) in q, with � considered fixed. To this end, we expand
the Bessel function and the sine in their known series. This leads to a double series,
which can be reorganized in a single series by means of the Cauchy product. Next
we integrate term by term over u and collect the powers of q, which then yields the
series expansion

Re Maðq; �Þtr
� �

¼ �
1

2
q
X1
n¼0

Anð�Þ
ð� 1

4
q2Þn

n!ðnþ 1Þ!
: ð24Þ

The coefficient functions An(�) are found to be

Anð�Þ ¼ jcos �jn!
Xn
m¼0

m!

ðn�mÞ!ð2mþ 1Þ!
ðsin2 �Þn�mð4 cos2 �Þm: ð25Þ

Along the same lines we obtain the Taylor series for Re Mbðq; �Þ
tr

� �
:

Re Mbðq; �Þ
tr

� �
¼

1

8
q3sin2 �

X1
n¼0

Anð�Þ
ð� 1

4
q2Þn

n!ðnþ 3Þ!
: ð26Þ

It seems remarkable that the coefficient functions An(�) for this expansion are
identical with those for the expansion of Re Maðq; �Þ

tr
� �

. For the third function we
find that

Re Mcðq; �Þtr
� �

¼
1

2
q sin �

X1
n¼0

Cnð�Þ
ð� 1

4
q2Þn

n!ðnþ 2Þ!
; ð27Þ

and this involves a slightly different coefficient function:

Cnð�Þ ¼ n!
Xn
m¼0

m!

ðn�mÞ!ð2mÞ!
ðsin2 �Þn�mð4 cos2 �Þm: ð28Þ
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It can be verified from equations (28) and (25) that the functions Cn(�) are related
to the functions An(�) according to

Cnð�Þ ¼ ðsin �Þ2n þ 2njcos �jAn�1ð�Þ; n ¼ 1; 2; . . . : ð29Þ

The expansion of the last function is given by

Re Mdðq; �Þtr
� �

¼ �
1

4
q
X1
n¼0

½Anð�Þ þ jcos �jCnð�Þ
ð� 1

4
q2Þn

n!ðnþ 2Þ!
; ð30Þ

which does not involve any new coefficient functions.
The leading order in q follows by retaining only the n¼ 0 term. With

A0(�)¼ jcos �j and C0(�)¼ 1 we then see that Re Maðq; �Þ
tr

� �
¼ �ðq=2Þjcos �j;

Re Mcðq; �Þ
tr

� �
¼ ðq=4Þ sin �; Re Mdðq; �Þ

tr
� �

¼ �ðq=4Þjcos �j; and Re Mbðq; �Þ
tr

� �
¼

Oðq3Þ: When we use this in the travelling part of equation (6) and rearrange the
tensorial parts we find that

Re ĝgðrÞtr
� �

¼
1

8
q sgn ð�Þ r̂rez þ ezr̂r� 3I� ezez½  þOðq3Þ: ð31Þ

This shows that the real part of the travelling waves in the near field is indeed O(q),
and equation (31) gives the exact appearance.

The real part ofMaðq; �Þ
tr is shown in figure 1, for �¼ 30o. It is illustrated that,

for reasonably small q, only a few terms already reproduce the exact value
(obtained by numerical integration) and, when more terms are retained, not only
does the approximation become more accurate, but also the range of q values where
the series expansion is applicable increases. It should be noted that the series (24)
converges for all q, but that numerically there is a limit on the number of terms
that can be summed owing to machine accuracy. We have found that, in double
precision, the series converges up to about q¼ 35 when 50 terms are used. After
that, numerical instabilities set in, and other methods for evaluating this function

Figure 1. Illustration of the exact value of Re ½Maðq; �Þ
tr
 (curve a) and its approximation

by ten terms in the series expansion (24) (curve b), as functions of q and for �¼ 30o.

Curve c shows the improvement when 40 terms in equation (24) are used.
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have to be employed. In any case, for the near field this series expansion appears to
be more than adequate. We have also verified that, for the other three functions,
similar conclusions hold.

6. Coefficient functions An(h)
The expansion coefficients An(�), defined by equation (25), can be simplified as

follows. We introduce a generating function

�ð�; tÞ ¼
X1
n¼0

Anð�Þ
tn

n!
: ð32Þ

After substitution of equation (25), this series has the form of a Cauchy product
and can be written as the product of two series, both of which can be evaluated in
closed form. We then obtain

�ð�; tÞ ¼
1

2

�

t

	 
1=2

et erf ðjcos �jt1=2Þ; t > 0: ð33Þ

Conversely, the coefficient functions An(�) follow from the generating function
according to

Anð�Þ ¼
dn

dtn
�ð�; tÞ

����
t¼0

: ð34Þ

With the known series expansion of the error function and term-by-term dif-
ferentiation this yields the alternative simpler form for An(�):

Anð�Þ ¼ n!
Xn
m¼0

ð�1Þm

ðn� mÞ!m!ð2mþ 1Þ
jcos �j2mþ1: ð35Þ

It can then be verified by inspection that An(�) can be expressed in terms of a
hypergeometric function according to Anð�Þ ¼ jcos �j 2F1ð

1
2
;�n; 3

2
; cos2 �Þ:

Some interesting properties of An(�) can be derived from this representation.
Firstly we notice that the � dependence only enters through jcos �j. We temporarily
set x¼ jcos �j, and writeYnðxÞ for the right-hand side of equation (35). We then see
immediately from equation (35) that the derivative of YnðxÞ is

dYnðxÞ

dx
¼ ð1� x2Þn; ð36Þ

and therefore

YnðxÞ ¼

Z x

0

dt ð1� t2Þn; ð37Þ

since Yn(0)¼ 0. With some further manipulations and integration by parts it can
be shown from this representation that the functions Yn(x) satisfy the following
recurrence relation:

ð2nþ 1ÞYnðxÞ ¼ 2nYn�1ðxÞ þ xð1� x2Þn: ð38Þ
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Then we set again x¼ jcos �j, and with Ynðjcos �jÞ ¼ Anð�Þ we obtain

Anð�Þ ¼
1

2nþ 1
2nAn�1ð�Þ þ jcos �jðsin �Þ2n
� �

; n ¼ 1; 2; . . . : ð39Þ

This relation determines all An(�) recursively from the first value A0(�)¼ jcos �j.
From a numerical point of view, this method is far superior to repeatedly
computing the sum in equation (35).

For the series expansion of all four auxiliary functions, we also need the
coefficient functions Cn(�). After generating the functions An(�) with the recursion
(39), the functions Cn(�) follow from equation (29). On the other hand, since both
functions are related by equation (29), a recursion between the functions An(�)
implies a recursion between the functions Cn(�). This recurrence relation is found
to take the form

ð2n� 1ÞCnð�Þ ¼ 2nCn�1ð�Þ � ðsin �Þ2n; n ¼ 1; 2; . . . ; ð40Þ

and with C0(�)¼ 1 this determines all Cn(�).
Some other features of An(�) can be derived from the results above. In equation

(39), the right-hand side is non-negative if An�1(�)� 0. Since A0(�)� 0, we
conclude that An(�)� 0 for all n. On the other hand, if An�1(�)� 1, then the factor
in square brackets does not exceed 2nþ 1, and therefore we have An(�)� 1.
Furthermore, we see from equation (35) that An(�/2)¼ 0. To find An(0), we go
back to the integral representation (37). For x¼ 1 this integral can be evaluated in
closed form:

Anð0Þ ¼

Z 1

0

dt ð1� t2Þn ¼
4nðn!Þ2

ð2nþ 1Þ!
: ð41Þ

If we set �¼�/2 in equation (29), we obtain Cn(�/2)¼ 1 for all n. On the other
hand, with �¼ 0 this relation gives Cn(0)¼ 2nAn�1(0), and with equation (41) this
becomes

Cnð0Þ ¼
4nðn!Þ2

ð2nÞ!
: ð42Þ

In order to see the dependence on n for n large, we use Stirling’s formula to
approximate the factorials. From equations (41) and (42) we then derive

Anð0Þ �
1

2

�

n

	 
1=2

; ð43Þ

Cnð0Þ � ð�nÞ1=2; ð44Þ

both for n large. This shows that the coefficient functions have only a very mild n
dependence, with the An(�) values decreasing and the Cn(�) values increasing.
Figure 2 shows a typical example of the coefficient functions as a function
of �.
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As for the � dependence, an interesting feature of the functions An(�) can be
derived as follows. Equation (37) is an integral of equation (36), but we can equally
integrate equation (36) as, with x¼ jcos �j,

Anð�Þ ¼ Anð0Þ �

Z 1

jcos �j

dt ð1� t2Þn; ð45Þ

with An(0) given by equation (41). For n sufficiently large, we have An(0)/ n
�1/2,

but the second term on the right-hand side of equation (45) vanishes exponentially
with n, provided that the lower limit does not approach zero. Therefore, we have
An(�)�An(0) for n large, and � not too close to �/2. Figure 3 shows A50(�), and
from the data we have found that the curve is flat in six figures up to �¼ 64o. We
see from figure 2 that already for n¼ 3 the � dependence of A3(�) is very weak, and
from the data it shows that up to 36o the value of A3(�) is constant in the two
figures.

7. Evanescent part
In order to obtain the series expansion of the evanescent part of ĝgðrÞ near the

origin of coordinates, we use the fact that the sum of the evanescent part and the
travelling part of each auxiliary function is known and given by the real parts of
equations (12)–(15). We expand each real part in a Taylor series in q, and then take

Figure 2. Coefficient functions A3(�) and C3(�) as a functions of � (in degrees).

Figure 3. Graph of A50(�), illustrating that the dependence of this function on � is very

weak, provided that �<90�.
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the difference from the series for the travelling parts, as given in section 5. Then
we combine the series by grouping the powers of q. For the first function we obtain
in this fashion

Maðq; �Þev ¼
1

q
�

1

2
q
X1
n¼0

anð�Þ
ð� 1

4
q2Þn

n!ðnþ 1Þ!
: ð46Þ

The first term, 1/q, diverges at the origin of coordinates, which indicates that for q
sufficiently small this term will dominate the remainder of the series in equation
(46), and the travelling waves, since these are finite for q¼ 0. The series in equation
(46) is, apart from the 1/q, identical in form with the series (24) for Re ½Maðq; �Þ

tr
,

with An(�) replaced by an(�). Furthermore, we find that the new coefficient
functions are related to the previous coefficient functions by the simple relation

anð�Þ ¼ Anð0Þ �Anð�Þ: ð47Þ

Comparison with equation (45) shows that an(�) has the integral representation

anð�Þ ¼

Z 1

jcos �j

dt ð1� t2Þn; ð48Þ

which we shall use in section 10. Furthermore, equation (39) implies a recursion
relation for the coefficients an(�):

anð�Þ ¼
1

2nþ 1
2n an�1ð�Þ � jcos �jðsin �Þ2n
� �

; ð49Þ

with initial value a0(�)¼ 1�jcos �j. Figure 4 shows Maðq; �Þ
ev and its series

representation.
For the second function we find that

Mbðq; �Þev ¼ � sin2 �
3

q3
þ

1

2q
þ

1

8
q

� �
þ

1

8
q3 sin2 �

X1
n¼0

anð�Þ
ð� 1

4
q2Þn

n!ðnþ 3Þ!
; ð50Þ

Figure 4. The exact Maðq; �Þ
ev from equation (23) for �¼ 30� (—) and its approximation

(—) by 40 terms in the series expansion (46).
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and, just as for the travelling part, the coefficient functions an(�) are the same as for
Maðq; �Þ

ev. Also, the second part in equation (50) has the same appearance as the
series (26). Two singular terms, O(q�3) and O(q�1), precede the Taylor series, and
an additional linear term appears. The remaining two functions are found to be

Mcðq; �Þev ¼ jsin ð2�Þj
3

q3
þ

1

2q

� �
þ

1

2
q sin �

X1
n¼0

cnð�Þ
ð� 1

4
q2Þn

n!ðnþ 2Þ!
; ð51Þ

Mdðq; �Þev ¼ �
8�

3k30
	ðrÞ þ ð1� 3 cos2 �Þ

1

q3
þ sin2 �

1

2q

�
1

4
q
X1
n¼0

½anð�Þ þ jcos �jcnð�Þ
ð� 1

4
q2Þn

n!ðnþ 2Þ!
; ð52Þ

which involve the new coefficient functions cn(�), defined by

cnð�Þ ¼ jcos �jCnð0Þ � Cnð�Þ: ð53Þ

They obey the recursion relation

ð2n� 1Þcnð�Þ ¼ 2ncn�1ð�Þ þ ðsin �Þ2n; ð54Þ

with initial value c0(�)¼ jcos �j�1.
When we combine the evanescent parts of the four functions as in equation (6),

we obtain for the evanescent part of the Green’s tensor

ĝgðrÞev ¼ �
4�

3k30
	ðrÞ ðI� 3ezezÞ þ

1

q3
ð3r̂rr̂r� IÞ þ

1

2q
ðr̂rr̂rþ IÞ þOðqÞ: ð55Þ

It is interesting to note that ĝgðrÞev has a q�3 contribution and a q�1 contribution,
but no q�2 part. The total Green’s tensor ĝgðrÞ; given by equation (11), has q�3, q�2

and q�1 terms and, for q large, these terms represent the familiar near-, middle-
and far-field parts of the corresponding electric field. For small q, however, we
need to expand eiq in equation (11) around q¼ 0 and next collect powers of q. It can
then be checked by inspection that this gives the right-hand side of equation (55),
with the q�2 term cancelling exactly. Obviously, this is the case since the travelling
part is O(1) near the origin. Therefore, all singular behaviour near the origin, or
near the source, arises because of the presence of evanescent waves, and equation
(55) shows explicitly their appearance.

8. Series expansion for small f

We have shown that the optical near field has distinctive contributions from
travelling and evanescent waves, and we have shown how the separate parts of the
Green’s tensor can be obtained by series expansion in q. For computational
purposes we also need to be able to evaluate the field for large q. This can be done
by asymptotic expansion of ĝgðrÞ with the method of stationary phase. In this
approach, however, the separate contributions from the travelling and evanescent
waves are not resolved, and only the leading term of the far field is recovered. In
this section we derive a series expansion which can be applied to evaluate the
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travelling and evanescent parts for large q. To this end we adopt dimensionless
cylinder coordinates (�, �), with �¼ q sin � and �¼ q cos �, as in section 4. We
substitute equation (25) for An(�) in equation (24) and change the order of
summation. Next we collect powers of j�j. It then appears that the coefficients in
the series can be expressed in terms of Bessel functions, and the result is

Re Maðq; �Þtr
� �

¼
1

2

X1
k¼0

k!

ð2kþ 1Þ!
�

2

�

� �kþ1

Jkþ1ð�Þj�j
2kþ1: ð56Þ

In this fashion we obtain a Taylor series in j�j, rather than q, and the coefficients
are functions of �, rather than �. Since Jkþ 1(�)¼O(�kþ 1) near �¼ 0, the negative
powers of � do not represent a singularity near the origin. More precisely, with the
limit

lim
�!0

2

�

� �kþ1

Jkþ1ð�Þ

" #
¼

1

ðkþ 1Þ!
; ð57Þ

the series (56) can be summed for �¼ 0, and we find that

Re Maðq; 0Þtr
� �

¼
1

q
ðcos q� 1Þ; ð58Þ

and the same for �¼�.
Since equation (56) is a Taylor series in j�j, we expect that its application is

limited to small values of j�j, which is the neighbourhood of the x–y plane,
although it can be shown that the series converges for all � and �. By retaining only
the first term in the series we obtain the approximation

Re Maðq; �Þtr
� �

� �
1

�
J1ð�Þj�j: ð59Þ

Figure 5 shows this approximation and the exact value as a function of � and for
�¼ 1.5. It appears that, for � not too small, this approximation is excellent, even

Figure 5. Re ½Maðq; �Þ
tr
 as a function of �, for �¼ 1.5 (—) and its approximation (—)

given by equation (59).
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though the value of � is not really small. For smaller values of � the difference
between the exact value and approximation (59) disappears within drawing accuracy.
We also conclude from the figure that the approximation improves with increasing �.
Therefore, expansion (56) can be used for large values of q, provided that the field
point is reasonably close to the x–y plane.

The series expansions for the other three functions follow similarly, with the
results

Re Mbðq; �Þtr
� �

¼ �
1

2

X1
k¼0

k!

ð2kþ 1Þ!
�

2

�

� �kþ1

Jkþ3ð�Þj�j
2kþ1; ð60Þ

Re Mcðq; �Þtr
� �

¼ �
X1
k¼0

k!

ð2kÞ!
�

2

�

� �kþ1

Jkþ2ð�Þj�j
2k; ð61Þ

Re Mdðq; �Þtr
� �

¼ �
1

2

X1
k¼0

ðkþ 1Þ!

ð2kþ 1Þ!
�

2

�

� �kþ2

Jkþ2ð�Þj�j
2kþ1: ð62Þ

On the z axis we have from equations (60) and (61)

Re Mbðq; 0Þtr
� �

¼ Re Mcðq; 0Þtr
� �

¼ 0; ð63Þ

since the orders of the Bessel functions are higher than the preceding inverse
powers of �. For equation (62) we have to take the limit � ! 0 with equation (57).
The remaining series can be summed in closed form, yielding

Re Mdðq; 0Þtr
� �

¼
2

q3
ð1� cos qÞ �

2 sin q

q2
þ

cosq

q
: ð64Þ

Another result which can be found immediately from these series expansions is the
value of the four functions for a field point in the x–y plane. From equation (61) we
have

Re Mcðq; �=2Þtr
� �

¼
2

q
J2ðqÞ; ð65Þ

and the other three functions vanish identically.

9. Asymptotic expansion in f

Although the series from the previous section converge for all j�j and �, in
practice the application is limited to small values of j�j. It appears possible to also
derive a series expansion which holds for j�j large and � fixed. To this end, we start
from the integral representations for the evanescent parts, as in equation (23).
Noting that such integrals have the form of a Laplace transform, successive terms
in the asymptotic series can be found by repeated integration by parts. The first
two terms of the expansion of equation (23) were reported in [24], and in [11] the
leading terms in the expansion of the evanescent parts of the four auxiliary
functions (12)–(15) were reported. In this approach, one obtains an expansion that
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becomes invalid near the x–y plane. With a more sophisticated method, a uniform
expansion can be derived which holds also near the x–y plane [25, 26]. The
limitation of this approach is that only the leading term can be found. In this
section we shall adopt a different method, leading to full asymptotic series for the
evanescent parts of the four auxiliary functions, which generalizes the results of
[24] and [11].

First we expand the Bessel function J0(x) in equation (23) in a Taylor series
around x¼ 0, which yields the representation

Maðq; �Þev ¼
X1
n¼0

ð� 1
4
�2Þ

n

ðn!Þ2

Z 1

0

du ð1þ u2Þne�uj�j: ð66Þ

Then we expand ð1þ u2Þn with Newton’s binomium and integrate term by term,
leading to

Maðq; �Þev ¼
X1
n¼0

ð� 1
4
�2Þ

n

n!

Xn
k¼0

ð2kÞ!

k!ðn� kÞ!

1

j�j2kþ1
: ð67Þ

After changing the order of summation, we recognize the series expansion of
Bessel functions of order k. Finally this gives

Maðq; �Þev ¼
X1
k¼0

ð2kÞ!

k!

	
�

1

2
�

k
Jkð�Þ

1

j�j2kþ1
: ð68Þ

It is interesting to note the resemblence with the expansion (56). Obviously, for
� ! 0 the series expansion (68) has no meaning. The result (68) is to be understood
as an asymptotic series with j�j as the large parameter and � fixed. The two leading
terms are

Maðq; �Þev ¼ J0ð�Þ
1

j�j
� �J1ð�Þ

1

j�j3
þ � � �; ð69Þ

in agreement with earlier results. This asymptotic expansion is extremely accurate,
even for j�j or q relatively small. We have drawn a graph of the first term in
equation (69) for �¼ 30�, and it appeared that J0(�)/j�j is indistinguishable from
the exact solution within graphing resolution. Only for j � j 92� (the z coordinate
smaller that about a wavelength) do we start to see some deviation between the
exact solution and the first term in the asymptotic series. In order to illustrate this,
we note that the asymptotic expansion of the evanescent waves also yields the
asymptotic expansion of the travelling waves. For instance, from equation (12) we
have Re Maðq; �Þ½  ¼ ðcos qÞ=q and, if we subtract equation (69), we find that

Re Maðq; �Þtr
� �

¼
cos q

q
� J0ð�Þ

1

j�j
þ � � �: ð70Þ

Figure 6 shows that indeed for values of q smaller than about a (dimensionless)
wavelength the approximation (70), only using the two terms shown, starts to deviate
from the exact value.
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The asymptotic expansions for the other three functions can be obtained along
similar lines. We find that

Mbðq; �Þev ¼ �
X1
k¼0

ð2kÞ!

k!
�

1

2
�

� �k
Jk�2ð�Þ

1

j�j2kþ1
; ð71Þ

Mcðq; �Þev ¼ �2
X1
k¼0

ð2kþ 1Þ!

k!
�

1

2
�

� �k
Jk�1ð�Þ

1

j�j2kþ2
; ð72Þ

Mdðq; �Þev ¼ �
X1
k¼0

ð2kþ 2Þ!

k!
�

1

2
�

� �k
Jkð�Þ

1

j�j2kþ3
; ð73Þ

and here we have used that Bessel functions of negative order are given by
J�n(�)¼ (�1)nJn(�). It should be noted that these expansions are not entirely
independent, since Mbðq; �Þ

ev and Mcðq; �Þ
ev are related as [11]

j�jMbðq; �Þev þ
1

2
�Mcðq; �Þev ¼ �J2ð�Þ; ð74Þ

as can be derived from their integral representations, and as can be verified
explicitly from equations (71) and (72). Also, for Mdðq; �Þ

ev we have the relation

3Mdðq; �Þev ¼ �
8�

k30
	ðrÞ þMaðq; �Þev �Mbðq; �Þev � jcot �jMcðq; �Þev; ð75Þ

as can be verified from equations (68) and (71)–(73) and recursion relations for
Bessel functions. Since the asymptotic expansions only hold for � 6¼ 0, the delta
function in equation (75) is irrelevant here.

For a field point on the z axis we have �¼ 0, j�j ¼ q, and with Jkð0Þ ¼ 	k;0 the
asymptotic series reduce to

Maðq; 0Þev ¼
1

q
; ð76Þ

Mbðq; 0Þev ¼Mcðq; 0Þev ¼ 0; ð77Þ

Mdðq; 0Þev ¼ �
2

q3
ð78Þ

Figure 6. The exact value of Re ½Maðq; �Þ
tr
 for �¼ 30� (—), and its asymptotic

approximation (—), as given by equation (70).
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(and the same for �¼�). On the other hand, we observe from equations (47) and
(53) that for �¼ 0 we have an(0)¼ cn(0)¼ 0 for all n. Therefore, in equation (46),
only the term 1/q survives and the right-hand side of equation (52) reduces to
�2/q3. Both equation (50) and equation (51) are proportional to sin �, so these
functions vanish identically for �¼ 0. This shows that equations (76)–(78) are exact
for all points on the z axis (� 6¼ 0).

10. New integral representations
With equation (37), the coefficient functions An(�) have the integral

representation

Anð�Þ ¼

Z jcos �j

0

dt ð1� t2Þn: ð79Þ

In this section we shall assume that z � 0, which will simplify the notation slightly.
In equation (79) we make the substitution t¼ cos �0, which gives

Anð�Þ ¼

Z �=2

�

d�0 ðsin �0Þ2nþ1: ð80Þ

When we substitute this expression in the series expansion (24) and change the
summation and integration order, then the remaining series can be summed in
closed form. We then find the new integral representation

Re Maðq; �Þtr
� �

¼ �

Z �=2

�

d�0J1ðq sin �0Þ: ð81Þ

This remarkably simple form is an alternative to the representation (22), where the
dependence on the field point coordinates q and � is far more cumbersome in
appearance. We have verified numerically that both representations are indeed
identical.

When we make the same change in variables in equation (48) we obtain for an(�)
the following:

anð�Þ ¼

Z �

0

d�0ðsin �0Þ2nþ1: ð82Þ

The series (46) for the evanescent part can then be summed in the same way, with
the result

Maðq; �Þev ¼
1

q
�

Z �

0

d�0 J1ðq sin �0Þ; ð83Þ

as an alternative to the representation (23). With the known integral

Z �=2

0

d�0 J1ðq sin �0Þ ¼
1

q
ð1� cos qÞ; ð84Þ
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it follows that the sum of equations (81) and (83) equals (cos q)/q, which is
Re Maðq; �Þ½ ; as it should be. It is interesting to note that in these new
representations the order of the Bessel functions is different from the order in
the original representations.

The series for the travelling and evanescent parts of the function Mbðq; �Þ are
determined by the same coefficient functions An(�) and an(�), and a similar
calculation to above yields the new integral representations for the travelling and
evanescent parts of this second function:

Re Mbðq; �Þtr
� �

¼ sin2 �

Z �=2

�

d�0
1

sin2 �0
J3ðq sin �0Þ; ð85Þ

Mbðq; �Þev ¼ � sin2 �
3

q3
þ

1

2q
þ

1

8
q

� �
þ sin2 �

Z �

0

d�0
1

sin2�0
J3ðq sin �0Þ: ð86Þ

The travelling (evanescent) parts of the other two auxiliary functions are linear
combinations of the travelling (evanescent) parts of the first two, as in equations
(74) and (75), so their integral representations follow from the results given above.

11. Conclusions
We have studied the travelling and evanescent parts of the optical near field

from the viewpoint of the electromagnetic Green’s tensor. This tensor can be
expressed in terms of four auxiliary functions, each of which splits into a travelling
and an evanescent part. Since the imaginary part of the tensor is pure travelling,
we only had to consider the real parts of the four functions. For each, a series
expansion around the origin was obtained, both for the (real part of the) travelling
parts and the evanescent parts. Here, the dimensionless radial distance q to the
origin is seen as the variable, with the polar angle � fixed. Then the Taylor
coefficients in these series expansions depend parametrically on �. It was shown
that the Taylor coefficients could be expressed in terms of the four coefficient
functions An(�), Cn(�), an(�) and cn(�), which can be generated numerically by
recursion. It was shown that all singular terms in the Green’s tensor are accounted
for by evanescent waves.

The series expansion around q¼ 0 was complemented by a series expansion in
j�j around j�j ¼ 0 and an asymptotic expansion in 1/j�j, which allows us to obtain
the Green’s tensor for all distances q. It appeared that there is a considerable
region of overlap between the expansion around q¼ 0 and the two expansions in j�j.

We have derived an integral representation for the coefficient function An(�)
from the generating function for these coefficients. It was shown that new integral
representations for the travelling and evanescent parts of the auxiliary functions
could be derived, which are considerably simpler in their dependence on the field
point coordinates q and � than the original defining integrals.
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