
Transverse and longitudinal components of the optical self-,
near-, middle- and far-field

HENK F. ARNOLDUS

Department of Physics and Astronomy, Mississippi State University,
PO Drawer 5167, Mississippi State, Mississippi, 39762-5167, USA

(Received 10 November 2001; revision received 5 February 2002)

Abstract. The electric field emitted by a localized current density has four
distinct parts, which are referred to as the self-, near-, middle- and far-field, and
each of these parts consists of a longitudinal and a transverse component. We
have studied this eight-fold splitting of the field by means of the corresponding
dyadic Green’s functions, both in configuration space and in reciprocal space. It
is shown that each component can be expressed in terms of rather simple
universal auxiliary functions.

1. Introduction
Electromagnetic fields emitted by localized sources of atomic dimensions are

usually observed in the far-field region, a macroscopic distance away from the
radiator. With recent developments in near-field technology, using very small
optical fibre tips, it has become experimentally feasible to measure electromagnetic
fields in the vicinity of an atom, as close as a few wavelengths distance from the
atom or any other microscopic source [1–4]. The electric field splits naturally into
four distinct parts: the self-field, near-field, middle-field and the far-field, each
with its own specific characteristics. Usually, only the far-field part is considered
since this field relates to macroscopic detection of the radiation. However, with the
increasing experimental interest in near-field optics it has become necessary to
study the other three parts of the field in more detail. It has been shown recently
[5–7] that especially the self-field plays a crucial role in radiation phenomena at
short distances. Historically, this self-field has been ignored completely since it
only exists inside the source [8].

A different kind of splitting of the electric field is into its transverse and
longitudinal components. These components could be characterized as the radiat-
ing and the attached components of the field, respectively, which is especially
evident when one considers the quantization of the field in the Coulomb gauge [9].

In this paper we study the combined splitting of the electric field. The four
parts of the field each have transverse and longitudinal components, which can be
evaluated explicitly. We shall obtain these eight contributions both in coordinate
(r) space and reciprocal (k) space. Rather than splitting the field itself, we consider
the dyadic Green’s function which relates the field to its source, and we shall split
this Green’s function directly. In this way, our results hold for any electric field, no
matter what its source is.
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2. Dyadic Green’s function
For a given localized current density jðrÞ the electric field is given by

EðrÞ ¼ i!�o

4p

ð
d3r0gðr� r0Þjðr0Þ þ i!�o

4pk2o
r r �

ð
d3r0gðr� r0Þjðr0Þ

� �
; ð1Þ

as follows from Maxwell’s equations. We shall assume a harmonic time depen-
dence with angular frequency !, and suppress the ! dependence of the various
quantities in the notation. Here, the scalar Green’s function is given by

gðrÞ ¼ exp ðikorÞ
r

; ð2Þ

with ko ¼ !=c. In order to express solution (1) in terms of a Green’s function, we
need to move the differential operators in the second term on the right-hand side
under the integral sign. Due to the singularity in gðrÞ this yields an additional term
[10, 11], and we obtain

r r �
ð
d3r0gðr� r0Þjðr0Þ

� �
¼ � 4p

3
jðrÞ þ

ð
d3r0r½r � ðgðr� r0Þjðr0ÞÞ
: ð3Þ

With some rearrangements, the solution for EðrÞ can then be written as

EðrÞ ¼ i!�o

4p

ð
d3r0gðr� r0Þ � jðr0Þ; ð4Þ

with the dyadic Green’s function (tensor) gðrÞ defined by

gðrÞ ¼ � 4p
3k2o

dðrÞ þ I þ 1

k2o
rr

� �
gðrÞ; ð5Þ

and here dðrÞ ¼ �ðrÞI with I the unit dyad.
Working out the derivatives rrgðrÞ in (5), and grouping the resulting terms

with respect to their r dependence, shows that the dyadic Green’s function gðrÞ is
the sum of the following four parts:

gðrÞSF ¼ � 4p
3k2o

dðrÞ; ð6Þ

gðrÞNF ¼ � 1

k2or
3
ðI � 3r̂rr̂rÞ exp ðikorÞ; ð7Þ

gðrÞMF ¼ i

kor2
ðI � 3r̂rr̂rÞ exp ðikorÞ; ð8Þ

gðrÞFF ¼ 1

r
ðI � r̂rr̂rÞ exp ðikorÞ: ð9Þ

The first contribution, gðrÞSF, is proportional to the delta function at r ¼ 0, and
this part is called the self-field. The next three terms have r dependences of r�3, r�2

and r�1, and these terms represent the near-, middle- and far-field dyadic Green’s
functions, respectively. Each part of the Green’s function then determines the
corresponding part of the electric field according to

EðrÞ�F ¼ i!�o

4p

ð
d3r0gðr� r0Þ�F � jðr0Þ; � ¼ S, N, M or F: ð10Þ
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For the self-field we then obtain

EðrÞSF ¼ � i

3"o!
jðrÞ; ð11Þ

indicating that this part is proportional to the current density at the same location.

3. Transverse and longitudinal components
A different way to split the electric field (or any other vector field) is into its

transverse (t) and longitudinal (‘) components. Given EðrÞ, these components are
defined as

EðrÞðtÞ ¼ 1

4p
r� r�

ð
d3r0Eðr0Þ 1

jr� r0j

� �
; ð12Þ

EðrÞð‘Þ ¼ � 1

4p
r r �

ð
d3r0Eðr0Þ 1

jr� r0j

� �
; ð13Þ

and it follows immediately that these new fields have zero divergence and curl,
respectively:

r � EðrÞðtÞ ¼ 0; ð14Þ

r � EðrÞð‘Þ ¼ 0: ð15Þ

Just as for the Green’s function, we can move the differential operators in (12) and
(13) under the integral sign, and this yields an extra term reminiscent of the self-
field part in (5). It then follows that we can represent the field components in the
compact form:

EðrÞðtÞ ¼ 2

3
EðrÞ þ 1

4p

ð
d3r0gðr� r0Þ � Eðr0Þ; ð16Þ

EðrÞð‘Þ ¼ 1

3
EðrÞ � 1

4p

ð
d3r0gðr� r0Þ � Eðr0Þ; ð17Þ

and here the tensor gðrÞ is defined as

gðrÞ ¼ rr 1

r
: ð18Þ

Explicitly,

gðrÞ ¼ 1

r3
ð3r̂rr̂r� IÞ: ð19Þ

From expressions (16) and (17) it is evident that the sum of the transverse and
longitudinal components equals the total field.

In the definitions above of the t and ‘ components of the electric field, these
components are expressed in terms of the total field itself. When splitting the
electric field, it is desirable to express the field components in terms of the source
jðrÞ of the field, just like in (4) and (10) for the total field and the separate parts of
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the field, respectively. Therefore, we seek dyadic Green’s functions gðrÞð
Þ, with

 ¼ t or ‘, such that

EðrÞð
Þ ¼ i!�o

4p

ð
d3r0gðr� r0Þð
Þ � jðr0Þ; 
 ¼ t or ‘: ð20Þ

These dyadic Green’s functions will be evaluated explicitly in section 5.

4. Reciprocal space
An extremely useful tool for the study of the various fields is a transform from

configuration (r) space to reciprocal (k) space. The transform of the electric field
EðrÞ is defined as

ÊEðkÞ ¼
ð
d3rEðrÞ exp ð�ik � rÞ; ð21Þ

with inverse

EðrÞ ¼ 1

ð2pÞ3
ð
d3kÊEðkÞ exp ðik � rÞ; ð22Þ

and other fields transform similarly. Such Fourier transform pairs will be denoted
as EðrÞ $ ÊEðkÞ.

The transform of the scalar Green’s function gðrÞ will be indicated by GðkÞ,
and is found to be

gðrÞ ¼ exp ðikorÞ
r

$ GðkÞ ¼ 4p
k2 � k2o � i"

; ð23Þ

as can be verified by evaluating the transform integral as in (21). Here it is
understood that we take " # 0 whenever appropriate. This construction with " is
necessary for the inverse transform to reproduce gðrÞ.

For ko ¼ 0, (23) reduces to

1

4pr
$ 1

k2 � i"
; ð24Þ

and with the convolution theorem we then find

1

4p

ð
d3r0Eðr0Þ 1

jr� r0j $
1

k2 � i"
ÊEðkÞ: ð25Þ

For the transform of EðrÞð
Þ we shall write ÊEðkÞð
Þ. Furthermore we have the
symbolic relation r $ ik, which then yields for the transforms of (12) and (13)

ÊEðkÞðtÞ ¼ �k̂k� ðk̂k� ÊEðkÞÞ; ð26Þ

ÊEðkÞð‘Þ ¼ k̂kðk̂k � ÊEðkÞÞ; ð27Þ

where k̂k represents the unit vector in the direction of k, and where the limit " # 0
has been taken. With a vector identity we then have

ÊEðkÞðtÞ þ ÊEðkÞð‘Þ ¼ ÊEðkÞ: ð28Þ

758 H. F. Arnoldus



Similarly, the transform of (1) becomes

ÊEðkÞ ¼ i!�o

4p
GðkÞ JðkÞ � 1

k2o
kðk � JðkÞÞ

� �
; ð29Þ

where jðrÞ $ JðkÞ. Then we apply the operation on the right-hand side of (27) to
(29) to obtain the longitudinal component:

ÊEðkÞð‘Þ ¼ i!�o

4p
GðkÞ 1� k2

k2o

� �
k̂kðk̂k � JðkÞÞ: ð30Þ

This can be simplified to

ÊEðkÞð‘Þ ¼ � i!�o

k2o
k̂kðk̂k � JðkÞÞ; ð31Þ

in view of (23). On the other hand, the transform of (20) is

ÊEðkÞð
Þ ¼ i!�o

4p
GðkÞð
Þ � JðkÞ; ð32Þ

with gðrÞð
Þ $ GðkÞð
Þ. For 
 ¼ ‘ this is the same as (31) provided we set

GðkÞð‘Þ ¼ � 4p
k2o

k̂kk̂k; ð33Þ

which is the longitudinal Green’s function in k space. The transverse Green’s
function can be found along similar lines and the result is

GðkÞðtÞ ¼ GðkÞðI � k̂kk̂kÞ: ð34Þ

On the other hand, when we write (29) in dyadic form as

ÊEðkÞ ¼ i!�o

4p
GðkÞ � JðkÞ; ð35Þ

it follows that the dyadic Green’s function for the total field is

GðkÞ ¼ GðkÞ I � k2

k2o
k̂kk̂k

� �
: ð36Þ

From (33) and (34) it can then be verified by inspection that

GðkÞðtÞ þ GðkÞð‘Þ ¼ GðkÞ: ð37Þ

5. Transformation to configuration space
We now turn to the evaluation of the transverse and longitudinal Green’s

functions in r space, which generate the transverse and longitudinal components of
the electric field from the current density, as shown in (20). The representation of
the longitudinal Green’s function in k space is given by (33), showing that it is
equal to k̂kk̂k, apart from a constant. This dyadic k̂kk̂k also appears on the right-hand
side of (27), if we write this as ÊEðkÞð‘Þ ¼ ðk̂kk̂kÞ � ÊEðkÞ. The equivalent in r space is
(17), which can be written as

EðrÞð‘Þ ¼
ð
d3r0dðr� r0Þð‘Þ � Eðr0Þ; ð38Þ
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so that

dðrÞð‘Þ ¼ 1

3
dðrÞ � 1

4p
gðrÞ: ð39Þ

This is the longitudinal delta function, which is the inverse transform of k̂kk̂k.
Therefore, the longitudinal Green’s function is

gðrÞð‘Þ ¼ � 4p
k2o

dðrÞð‘Þ; ð40Þ

which is explicitly

gðrÞð‘Þ ¼ � 4p
3k2o

dðrÞ þ 1

k2or
3
ð3r̂r̂rr� IÞ: ð41Þ

The transverse part can now be found immediately by noting that

gðrÞðtÞ ¼ gðrÞ � gðrÞð‘Þ; ð42Þ

where gðrÞ is given by (5), and the explicit representation is the sum of the four

parts given in (6)–(9). We then obtain

gðrÞðtÞ ¼ ðI � r̂rr̂rÞ exp ðikorÞ
r

þ ðI � 3r̂rr̂rÞ i

kor2
exp ðikorÞ þ

1

k2or
3
1� exp ðikorÞð Þ

� �
:

ð43Þ

It is interesting to note that both the longitudinal and transverse components

acquire an r�3 part. It should also be mentioned that gðrÞðtÞ can alternatively be

obtained from its representation in k space, GðkÞðtÞ ¼ GðkÞðI � k̂kk̂kÞ, (34), by

applying directly the inverse integral transform, as in (22). We have verified that

this leads to the same result.

6. The parts of the field in reciprocal space

We shall now split the four parts of the Green’s function into their

transverse and longitudinal components, leading to eight separate contributions.

Just as for the total Green’s function, this splitting is accomplished first in k
space, and then a subsequent inverse transform yields the various components

in r space.

To this end, we need the spatial transforms of the four Green’s functions in

(6)–(9). This can be done by direct integration, e.g. by evaluating the integrals

GðkÞ�F ¼
ð
d3rgðrÞ�F exp ð�ik � rÞ; � ¼ S, N, M or F: ð44Þ

These integrals are rather cumbersome and have been studied in [12]. The result

is
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GðkÞSF ¼ � 4p
3k2o

I; ð45Þ

GðkÞNF ¼ 4p
k2o

ðI � 3k̂kk̂kÞTðko=kÞNF; ð46Þ

GðkÞMF ¼ 4p
k2o

ðI � 3k̂kk̂kÞTðko=kÞMF; ð47Þ

GðkÞFF ¼ ðI � k̂kk̂kÞGðkÞ þ 4p
k2o

ðI � 3k̂kk̂kÞTðko=kÞFF: ð48Þ

The k dependence of these Green’s functions enters through a set of auxiliary
functions TðqÞ�F, defined by the integral representations

TðqÞNF ¼ �
ð1
0

dt

t3
3 cos t þ t � 3

t

� �
sin t

� �
exp ðiqtÞ; ð49Þ

TðqÞMF ¼ iq

ð1
0

dt

t2
3 cos t þ t � 3

t

� �
sin t

� �
exp ðiqtÞ; ð50Þ

TðqÞFF ¼ q2
ð1
0

dt

t
cos t � sin t

t

� �
exp ðiqtÞ; ð51Þ

where q ¼ ko=k. These three universal functions are plotted in figures 1–3 as a
function of 1=q, which is the wave number k in units of ko.

With these Green’s functions, the parts of the field in k space are then

ÊEðkÞ�F ¼ i!�o

4p
GðkÞ�F � JðkÞ: ð52Þ

It can be shown that the functions TðqÞ�F obey the sum rule

TðqÞNF þ TðqÞMF þ TðqÞFF ¼ 1
3
; ð53Þ

and with this identity we verify that the sum of the Green’s functions is indeed the
Green’s function of the unsplit field:X

�

GðkÞ�F ¼ GðkÞ: ð54Þ
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Figure 1. Graph of TðqÞNF plotted as a function of 1=q ¼ k=ko. For k < ko, the
imaginary part of TðqÞNF is identically zero. The real part of TðqÞNF approaches the
value 1/3 for k ! 1.



7. The components of the parts of the field in k space
We now seek the Green’s functions which filter out the transverse and long-

itudinal components of the parts, e.g. when operating on the current density, the
result is

ÊEðkÞð
Þ�F ¼ i!�o

4p
GðkÞð
Þ�F � JðkÞ: ð55Þ

In k space this splitting is particularly simple since the dyadic operator k̂kk̂k filters
out the longitudinal part, and therefore the operator I � k̂kk̂k yields the transverse
part. It then follows immediately that the Green’s functions from (45)–(48)
separate as

GðkÞðtÞSF ¼ � 4p
3k2o

ðI � k̂kk̂kÞ; ð56Þ

GðkÞð‘ÞSF ¼ � 4p
3k2o

k̂kk̂k; ð57Þ

GðkÞðtÞNF ¼ 4p
k2o

ðI � k̂kk̂kÞTðko=kÞNF; ð58Þ

GðkÞð‘ÞNF ¼ � 8p
k2o

k̂kk̂kTðko=kÞNF; ð59Þ
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Figure 2. Graph of TðqÞMF plotted as a function of 1=q ¼ k=ko. At k ¼ ko, the real part of
TðqÞMF has a singularity and the imaginary part vanishes for k < ko.

Figure 3. Graph of TðqÞFF plotted as a function of 1=q ¼ k=ko.



GðkÞðtÞMF ¼ 4p
k2o

ðI � k̂kk̂kÞTðko=kÞMF; ð60Þ

GðkÞð‘ÞMF ¼ � 8p
k2o

k̂kk̂kTðko=kÞMF; ð61Þ

GðkÞðtÞFF ¼ ðI � k̂kk̂kÞ GðkÞ þ 4p
k2o

Tðko=kÞFF
� �

; ð62Þ

GðkÞð‘ÞFF ¼ � 8p
k2o

k̂kk̂kTðko=kÞFF: ð63Þ

It is interesting to see that the first term of the transverse part of the far-field,
ðI � k̂kk̂kÞGðkÞ, is just the transverse Green’s function of the total field, as given in
(34). Also, with the sum rule (53), we notice that the Green’s functions for the
transverse (longitudinal) parts add up to the transverse (longitudinal) Green’s
function for the total field.

8. The components of the parts of the field in r space
The final step is to obtain the various Green’s functions in r space. We let

gðrÞð
Þ�F $ GðkÞð
Þ�F; ð64Þ

which generates the 
 component of the � part of the field from the current density
according to

EðrÞð
Þ�F ¼ i!�o

4p

ð
d3r0gðr� r0Þð
Þ�F � jðr0Þ: ð65Þ

Let us first consider the self-field. As shown in section 5, we have dðrÞð‘Þ $ k̂kk̂k, and
similarly we have dðrÞðtÞ $ I � k̂kk̂k. Therefore, the Green’s functions for the
components of the self-field are

gðrÞðtÞSF ¼ � 4p
3k2o

dðrÞðtÞ; ð66Þ

gðrÞð‘ÞSF ¼ � 4p
3k2o

dðrÞð‘Þ; ð67Þ

or more explicitly

gðrÞðtÞSF ¼ � 8p
9k2o

dðrÞ � 1

3k2or
3
ð3r̂r̂rr� IÞ; ð68Þ

gðrÞð‘ÞSF ¼ � 4p
9k2o

dðrÞ þ 1

3k2or
3
ð3r̂r̂rr� IÞ: ð69Þ

Comparison with the Green’s function of the longitudinal component of the total
field, equation (40), gives

gðrÞð‘ÞSF ¼ 1

3
gðrÞð‘Þ; ð70Þ
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showing that 1/3 of the total longitudinal field ends up in the self-field. On the
other hand, (41) combined with (6) yields

gðrÞð‘Þ ¼ gðrÞSF þ 1

k2or
3
ð3r̂r̂rr� IÞ; ð71Þ

where gðrÞSF is the delta function contribution to the total field. So, it seems that
the delta function part of the field only contributes to the longitudinal component.
However, the longitudinal component of this self-field only accounts for 1/3 of the
total delta function part of the longitudinal field. This seemingly contradictory
result can be explained by noting that ‘the component of a part’ is not necessarily
the same as ‘the part of a component’, e.g. these operations do not commute. For
instance, the transverse component of the self-field has an r�3 part, which is of the
near-field type. We shall see below that the other 2/3 of the delta function in the
total longitudinal component comes from the near-field. But then, since the near-
field itself does not have a delta function, this implies that the transverse
component of the near-field must have a delta function contribution, even though
the total transverse field does not.

The remaining six Green’s functions will be evaluated by direct integration:

gðrÞð
Þ�F ¼ 1

ð2pÞ3
ð
d3kGðkÞð
Þ�F exp ðik � rÞ; ð72Þ

except for the part ðI � k̂kk̂kÞGðkÞ in the transverse component of the far-field, since
we already know that its inverse is gðrÞðtÞ from (43). Then each remaining term to
be inverted has a function Tðko=kÞ�F in it, for which we shall use the integral
representations from section 6. For � ¼ M or F these functions go to zero
sufficiently fast for k ! 1 for the integral in (72) to exist, but for the near-field
we have Tðko=kÞNF ! 1=3 for k ! 1. This leads again to delta function con-
tributions, which will be split off first. We write TNF ¼ 1=3þ ðTNF � 1=3Þ and
consider the effect of the 1/3 first. From (58) and (59) we see that this 1/3 leads to

gðrÞðtÞNF ¼ 4p
3k2o

dðrÞðtÞ þ f. . .g; ð73Þ

gðrÞð‘ÞNF ¼ � 8p
3k2o

dðrÞð‘Þ þ f. . .g; ð74Þ

and here f. . .g stands for the inverse with TNF replaced by TNF � 1=3. We notice
that this ‘1/3 contribution’ to gðrÞðtÞNF is just the opposite of gðrÞðtÞSF, showing that the
total transverse field does not have a delta function indeed. On the other hand, for
the longitudinal component we get from the self-field and near-field

gðrÞð‘ÞSF þ gðrÞð‘ÞNF ¼ � 4p
3k2o

dðrÞð‘Þ � 8p
3k2o

dðrÞð‘Þ þ f. . .g

¼ � 4p
k2o

dðrÞð‘Þ þ f. . .g; ð75Þ

and here the first term on the right-hand side is exactly gðrÞð‘Þ from (40). There-
fore, all delta functions have been accounted for at this point. It also shows that the
sum of the longitudinal components of the middle- and far-field must equal the
opposite of f. . .g in (75). Obviously, this is equivalent to the sum rule (53).
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For the inverse transforms of the terms with a T�F function we proceed by
direct integration. First we consider the longitudinal components, which are of the
form k̂kk̂kTðko=kÞ�F, apart from an overall constant. For the middle- and far-field we
use the integral representations (50) and (51) for TMF and TFF, respectively. For
the near-field we replace TNF by TNF � 1=3. From (49) we can derive the following
representation for TNF � 1=3:

TðqÞNF � 1

3
¼ �iq

ð1
0

dt

t3
ðt cos t � sin tÞ exp ðiqtÞ: ð76Þ

In the Appendix we show in some detail how these inverse transforms are
performed. The results for the longitudinal components are:

gðrÞð‘ÞNF ¼ � 8p
9k2o

dðrÞ þ 2

k2or
3
ðr̂rr̂r exp ðikorÞ � I�4ðkorÞÞ; ð77Þ

gðrÞð‘ÞMF ¼ � 2i

kor2
ðr̂r̂rr exp ðikorÞ � I�3ðkorÞÞ; ð78Þ

gðrÞð‘ÞFF ¼ � 2

3kor2
ðI � 3r̂rr̂rÞ i exp ðikorÞ �

1

kor
ðexp ðikorÞ � 1Þ

� �
þ 2

3r
I�2ðkorÞ: ð79Þ

Here we have introduced the auxiliary functions

�nðxÞ ¼
ð1
1

dp
exp ðipxÞ

pn
; x > 0; n ¼ 1; 2; . . . ; ð80Þ

needed for n ¼ 2, 3 and 4.
The functions �nðxÞ satisfy the recurrence relation

�nþ1ðxÞ ¼
1

n
ðexp ðixÞ þ ix�nðxÞÞ; ð81Þ

and therefore they can successively be obtained from �1ðxÞ. In terms of the sine
and cosine integrals si (x) and ci (x) this function is [13]

�1ðxÞ ¼ �ci ðxÞ � i si ðxÞ: ð82Þ
By repeated application of (81), going from a given n to higher ones, we find the
asymptotic series

�nðxÞ ¼ � exp ðixÞ
ix

1þ n

ix
þ nðn þ 1Þ

ðixÞ2
þ � � �

" #
; x large: ð83Þ

Therefore, the leading term of �nðkorÞ in the region of large r is i exp ðikorÞ=kor,
independent of n. From (77) we then notice that the longitudinal component of the
near-field has an r�4 contribution, and the Green’s function of the longitudinal
component of the middle-field, given by (78), has an r�3 part. Interesting about the
longitudinal part of the far-field is that it has no 1=r component. For the behaviour
at small x, or r, we use the familiar results for ci (x) and si (x), which yields

�1ðxÞ ¼ �� � ln x þ ip
2
þOðxÞ; x # 0; ð84Þ

with � Euler’s constant. Then with (81) we find

�nð0Þ ¼
1

n � 1
; n ¼ 2; 3; . . . : ð85Þ
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This shows that �nðxÞ for n ¼ 2, 3 and 4 remains finite for x # 0. The functions
�2ðxÞ, �3ðxÞ and �4ðxÞ are illustrated in figures 4 and 5.

With (81), both the �3ðkorÞ in (78) and the �4ðkorÞ in (77) can be expressed in
terms of �2ðkorÞ. When we then add (77)–(79), and add the longitudinal component
of the self-field from (69), we verify thatX

�

gðrÞð‘Þ�F ¼ gðrÞð‘Þ: ð86Þ

The Green’s functions for the transverse components of the parts of the field now
follow from

gðrÞðtÞ�F ¼ gðrÞ�F � gðrÞð‘Þ�F; ð87Þ

and the result is

gðrÞðtÞNF ¼ 8p
9k2o

dðrÞ � 1

k2or
3
ðI � r̂rr̂rÞ exp ðikorÞ þ

2

k2or
3
I�4ðkorÞ; ð88Þ

gðrÞðtÞMF ¼ i

kor2
ðI � r̂rr̂rÞ exp ðikorÞ �

2i

kor2
I�3ðkorÞ; ð89Þ

gðrÞðtÞFF ¼ ðI � r̂rr̂rÞ exp ðikorÞ
r

� 2

3r
I�2ðkorÞ

þ 2

3kor2
ðI � 3r̂rr̂rÞ i exp ðikorÞ �

1

kor
ðexp ðikorÞ � 1Þ

� �
: ð90Þ
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Figure 4. Plot of the real parts of the functions �2ðxÞ, �3ðxÞ and �4ðxÞ.

Figure 5. Plot of the imaginary parts of the functions �2ðxÞ, �3ðxÞ and �4ðxÞ. These
imaginary parts are zero for x ¼ 0.



9. Electric dipole
As an example, let us consider an electric dipole located in r ¼ 0. The dipole

moment is lð!Þ and the corresponding current density is

jðrÞ ¼ �i!l�ðrÞ: ð91Þ
With (65) we then find for the components of the parts of the field

EðrÞð
Þ�F ¼ k2o
4p"o

gðrÞð
Þ�F � l: ð92Þ

For instance, with (78) and (89), respectively, the longitudinal and transverse
components of the middle-field are found to be

EðrÞð‘ÞMF ¼ �iko
2p"or2

½̂rrðr̂r � lÞ exp ðikorÞ � �3ðkorÞl
; ð93Þ

EðrÞðtÞMF ¼ iko

4p"or2
f½l � r̂rðr̂r � lÞ
 exp ðikorÞ � 2�3ðkorÞlg; ð94Þ

and similar expressions can be written down for the other three parts of the dipole
field. With these explicit results we can now verify by differentiation that these
fields are indeed longitudinal and transverse, e.g.

r� EðrÞð‘ÞMF ¼ 0; ð95Þ

r � EðrÞðtÞMF ¼ 0: ð96Þ

For this we need the derivatives of the �nðxÞ functions. From the definition (80) it
follows that

�nðxÞ0 ¼ i�n�1ðxÞ; n ¼ 2; 3; . . . ; ð97Þ
and with the recursion relation (81) this becomes

�nðxÞ0 ¼
1

x
½ðn � 1Þ�nðxÞ � exp ðixÞ
; n ¼ 2; 3; . . . ; ð98Þ

expressing the derivative in terms of �nðxÞ itself.

10. Conclusions
We have studied the dyadic Green’s function which determines the electric

field from a given current density. The electric field naturally separates into four
parts: the self-, near-, middle- and far-field. This separation can be contributed to
four corresponding parts of the dyadic Green’s function. On the other hand, the
electric field can be considered as a sum of a longitudinal and a transverse
component, and this separation can also be accounted for by a corresponding
splitting of the dyadic Green’s function. But then, each of the four parts of the
field, or the corresponding Green’s function, has its own distinct contribution to
both the longitudinal and to the transverse field. We have evaluated the long-
itudinal and transverse components of each part of the field, and this was done
both in configuration space and in reciprocal space. In k space, this splitting
involves a set of three auxiliary functions TNF, TMF and TFF, which depend
only on the magnitude of vector k. In r space, the representation of the near-,
middle- and far-field involves the auxiliary functions �4ðkorÞ, �3ðkorÞ and �2ðkorÞ,
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respectively, and these depend only on the magnitude of vector r. A particularly
interesting result is that the Green’s functions of the longitudinal and transverse
components of the near-field acquire a delta function contribution, whereas
the Green’s function for the total near-field has no delta function part. Vice
versa, the Green’s function for the total self-field is proportional to a delta
function, but the Green’s functions for the longitudinal and transverse compo-
nents have a continuous part.

Appendix
The Green’s function of the longitudinal component of the far-field in r space

is the inverse of (63), and with (22) this is

gðrÞð‘ÞFF ¼ � 1

p2k2o

ð
d3kðk̂kk̂kÞTðko=kÞFF exp ðik � rÞ: ðA1Þ

In order to evaluate this integral we adopt spherical coordinates ðk; �; �Þ in k space,
and we take the polar axis along the vector r. The volume element is
d3k ¼ k2 sin �dkd�d�, and we have exp ðik � rÞ ¼ exp ðikr cos �Þ. The only �
dependence appears through k̂kk̂k and this leads toð2p

0

d�k̂kk̂k ¼ ðI � r̂rr̂rÞp sin2 �þ r̂rr̂r2p cos2 �: ðA2Þ

Then the � dependence comes in as in (A 2), through the volume element, and
through exp ðikr cos �Þ. Integration over � yields

gðrÞð‘ÞFF ¼ � 4

pk2o

ð1
0

dkk2Tðko=kÞFF

� r̂r̂rr
sinðkrÞ

kr
þ ð3r̂rr̂r� IÞ cos ðkrÞ

ðkrÞ2
� sin ðkrÞ

ðkrÞ3

 !" #
: ðA3Þ

Next we make the change of variables u ¼ kr. This gives for the argument of the T
function ko=k ¼ kor=u. Then we substitute the integral representation (51) for
Tðkor=uÞ, and subsequently we change the integration variable from t to
v ¼ kort=u. This gives

gðrÞð‘ÞFF ¼ � 4

pr

ð1
0

du

ð1
0

dv
exp ðivÞ

v
cos

uv

kor

� �
� kor

uv
sin

uv

kor

� �� �

� r̂rr̂r
sin u

u
þ ð3r̂rr̂r� IÞ cos u

u2
� sin u

u3

� �� �
: ðA4Þ

Here, we integrate over u first. Care should be exercised about the lower limit,
u ¼ 0. When integrating by parts several times, the integral can be reduced to a
combination of tabulated integrals. However, various integrated parts do not exist
in the lower limit. Therefore, first we keep the lower limit finite, say u ¼ �, and
then in the end we take � # 0. This gives for the integral over u:

ð1
0

du . . .h i . . .h i ¼ �I
p
6

p2

1
1=p

8<
: þ r̂rr̂r

p
4

2p2;
1;
0;

0 � p < 1;
p ¼ 1;
p > 1;

8<
: ðA5Þ
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where we have set p ¼ v=kor. When we substitute (A 5) into (A 4), and change the
integration variable to p we find

gðrÞð‘ÞFF ¼ 2

3r
ðI � 3r̂rr̂rÞ

ð1
0

dpp exp ðipkorÞ þ I

ð1
1

dp
exp ðipkorÞ

p2

� �
: ðA6Þ

The second integral is �2ðkorÞ, and the first one can be evaluated easily. The result
is (79).

For the Green’s function of the longitudinal component of the middle-field we
follow the same procedure. The equivalent of (A 4) becomes

gðrÞð‘ÞMF ¼ � 4i

pr

ð1
0

du

ð1
0

dv
exp ðivÞ

v2
3 cos

uv

kor

� �
þ uv

kor
� 3

kor

uv

� �
sin

uv

kor

� �� �

� r̂rr̂r
sin u

u
þ ð3r̂r̂rr� IÞ cos u

u2
� sin u

u3

� �� �
: ðA7Þ

Here we encounter the problem that strictly speaking the integral over u does not
exist in the upper limit, for one of the terms. In that term we keep the upper limit
u ¼ kmaxr finite for the time being. Then the integral over u becomes

ð1
0

du . . .h i . . .h i ¼ r̂rr̂rp

ðkmaxr

0

du sin ðpuÞ sin u � I
p
4

0; 0 � p < 1;
1; p ¼ 1;
2=p; p > 1:

8<
: ðA8Þ

Substitution into (A 7) then gives, after changing the integration variable to p,

gðrÞð‘ÞMF ¼ 2i

kor2
I�3ðkorÞ �

4i

pkor2
r̂rr̂r

ðkmaxr

0

du sin u

ð1
0

dp
exp ðipkorÞ

p
sin ðpuÞ: ðA9Þ

Here we integrate over p first, with the result

ð1
0

dp
exp ðipkorÞ

p
sin ðpuÞ ¼ i

4
ln

u þ kor

u � kor

� �2
" #

þ
p=2; u > kor;
p=4; u ¼ kor;
0; u < kor:

8<
: ðA10Þ

Now we encounter the problem that the right-hand side has a singularity at
u ¼ kor, and when substituted into (A 9) we have to evaluate the integral over u as a
principal value integral around u ¼ kor. Since the singularity is logarithmic, this
integral exists. The remaining integral over u with the logarithm in it exists for
kmax ! 1. We split the integral in an integral over ½0; kor � "
 and one over
½kor þ ";1
, integrate by parts, and then take the limit " # 0. This givesð1

0

duðsin uÞ ln u þ kor

u � kor

� �2
" #

¼ 4kor

ð1
0

du
cos u

k2or
2 � u2

; ðA11Þ

which is still a principal value integral. In order to evaluate this integral, we extend
the range to u ¼ �1, close the contour with a semicircle in the upper half of the
complex u plane, avoiding the poles at u ¼ kor and u ¼ �kor with small semicircles
above the real axis. Then the contour integral is zero, so the integral itself is the
sum of the integrals over the small semicircles. This yieldsð1

0

duðsin uÞ ln u þ kor

u � kor

� �2
" #

¼ 2p sin ðkorÞ: ðA12Þ
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Putting everything together then gives for the Green’s function

gðrÞð‘ÞMF ¼ 2i

kor2
½I�3ðkorÞ � r̂r̂rrðexp ðikorÞ � cos ðkmaxrÞÞ
: ðA13Þ

Here we have taken kmax ! 1 wherever possible. The term with cos ðkmaxrÞ,
however, does not formally exist. However, for kmax large, this term varies rapidly

as a function of r. Since every Green’s function is eventually integrated over, this

term will average to zero. Therefore we can leave it out.

The Green’s function for the longitudinal component of the near-field can be

evaluated along the same lines, with no additional complications.
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