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Abstract. The electric field emitted by a localized current density has four
distinct parts, which are referred to as the self-, near-, middle- and far-field, and
each of these parts consists of a longitudinal and a transverse component. We
have studied this eight-fold splitting of the field by means of the corresponding
dyadic Green’s functions, both in configuration space and in reciprocal space. It
is shown that each component can be expressed in terms of rather simple
universal auxiliary functions.

1. Introduction

Electromagnetic fields emitted by localized sources of atomic dimensions are
usually observed in the far-field region, a macroscopic distance away from the
radiator. With recent developments in near-field technology, using very small
optical fibre tips, it has become experimentally feasible to measure electromagnetic
fields in the vicinity of an atom, as close as a few wavelengths distance from the
atom or any other microscopic source [1-4]. The electric field splits naturally into
four distinct parts: the self-field, near-field, middle-field and the far-field, each
with its own specific characteristics. Usually, only the far-field part is considered
since this field relates to macroscopic detection of the radiation. However, with the
increasing experimental interest in near-field optics it has become necessary to
study the other three parts of the field in more detail. It has been shown recently
[5-7] that especially the self-field plays a crucial role in radiation phenomena at
short distances. Historically, this self-field has been ignored completely since it
only exists inside the source [8].

A different kind of splitting of the electric field is into its transverse and
longitudinal components. These components could be characterized as the radiat-
ing and the attached components of the field, respectively, which is especially
evident when one considers the quantization of the field in the Coulomb gauge [9].

In this paper we study the combined splitting of the electric field. The four
parts of the field each have transverse and longitudinal components, which can be
evaluated explicitly. We shall obtain these eight contributions both in coordinate
(r) space and reciprocal (K) space. Rather than splitting the field itself, we consider
the dyadic Green’s function which relates the field to its source, and we shall split
this Green’s function directly. In this way, our results hold for any electric field, no
matter what its source is.
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2. Dyadic Green’s function
For a given localized current density j(r) the electric field is given by

Wi [ 3, INT™ 1wfio 3. INT™,
E(r)=—— | d°Fg(r —r)j(r) + VIV [drglr—r)jr)], 1
0= [avee i)+ 2 (v [avar-nim) ). )
as follows from Maxwell’s equations. We shall assume a harmonic time depen-
dence with angular frequency w, and suppress the w dependence of the various
quantities in the notation. Here, the scalar Green’s function is given by

o(F) = exp (iko7) , )
r
with k, = w/c. In order to express solution (1) in terms of a Green’s function, we
need to move the differential operators in the second term on the right-hand side
under the integral sign. Due to the singularity in g(r) this yields an additional term
[10, 11], and we obtain

v(v [ r')i(r’)) =TI+ [PV - Ri). )

With some rearrangements, the solution for E(r) can then be written as

() = [a'rglr =) () +)
T
with the dyadic Green’s function (tensor) g(r) defined by
4r 1
1) =~ 500 + (14 17 et 8

and here (r) = 6(r)I with I the unit dyad.

Working out the derivatives VVg(r) in (5), and grouping the resulting terms
with respect to their » dependence, shows that the dyadic Green’s function g(r) is
the sum of the following four parts:

B(M)sr = 30000, (6)
B e = = a7 (1= 390 exp (i), (7)
) = o (1 386) ex (ikur), (5
@)y = (1= FF) exp (o). o

The first contribution, g(r)gp, is proportional to the delta function at » = 0, and
this part is called the self-field. The next three terms have r dependences of =3, 72
and 7!, and these terms represent the near-, middle- and far-field dyadic Green’s
functions, respectively. Each part of the Green’s function then determines the
corresponding part of the electric field according to

E(r),p = %Jd%/g(r — ), i(F), a=8,N, Mor F. (10)
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For the self-field we then obtain

i

E(r)sp = i(r), (11)

3w

indicating that this part is proportional to the current density at the same location.

3. Transverse and longitudinal components

A different way to split the electric field (or any other vector field) is into its
transverse (t) and longitudinal (¢) components. Given E(r), these components are
defined as

1 1

Er© — L J SYE(F 12

(r) 4TCV>< V x | d°r (r)|r—r’| , (12)

En® = - Lv(v. Jd%/E(r/)L (13)

4 r—vr|)’

and it follows immediately that these new fields have zero divergence and curl,
respectively:

V-En"Y =0, (14)

vV xE(n"Y =o. (15)

Just as for the Green’s function, we can move the differential operators in (12) and
(13) under the integral sign, and this yields an extra term reminiscent of the self-
field part in (5). It then follows that we can represent the field components in the
compact form:

" = %E(r) +ﬁjd3r’n(r _¥)-E(r), (16)
E(n" :%E(r) —ﬁjd%’n(r— r) - E(r), (17)

and here the tensor (r) is defined as

n(r) = vVl (18)

7

Explicitly,

n(r) = (3iF 1), (19)
From expressions (16) and (17) it is evident that the sum of the transverse and
longitudinal components equals the total field.

In the definitions above of the t and ¢ components of the electric field, these
components are expressed in terms of the total field itself. When splitting the
electric field, it is desirable to express the field components in terms of the source
j(r) of the field, just like in (4) and (10) for the total field and the separate parts of
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(B)

the field, respectively. Therefore, we seek dyadic Green’s functions g(r)"”’, with
3 =t or £, such that
E(n? = %Jd%’g(r ) .§), B=tort (20)

These dyadic Green’s functions will be evaluated explicitly in section 5.

4. Reciprocal space
An extremely useful tool for the study of the various fields is a transform from
configuration (r) space to reciprocal (k) space. The transform of the electric field

E(r) is defined as

E(k) = Jd3rE(r) exp (—ik - 1), (21)
with inverse
E(r) = ! Jd3kE(k) exp (ik -r) (22)
(2m)’ ’

and other fields transform similarly. Such Fourier transform pairs will be denoted
as E(r) < E(k).

The transform of the scalar Green’s function g(r) will be indicated by G(k),
and is found to be
exp (ikor) 4

g(r)

as can be verified by evaluating the transform integral as in (21). Here it is
understood that we take € | 0 whenever appropriate. This construction with € is
necessary for the inverse transform to reproduce g(r).

For k, =0, (23) reduces to

1 1
— s — 24
dr R e (24)
and with the convolution theorem we then find
1 1 1 .
— | &YE(Y E(k). 25
4nJ ()|r—r’|Hk2—ia (k) (25)

For the transform of E(r)(ﬁ) we shall write E(k)(m. Furthermore we have the
symbolic relation V « ik, which then yields for the transforms of (12) and (13)

E(k)"Y = —k x (k x E(k)), (26)
E(k)"” = k(k-E(k)), (27)

where K represents the unit vector in the direction of k, and where the limite | 0
has been taken. With a vector identity we then have

E(k)" +E(k)" = E(k). (28)
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Similarly, the transform of (1) becomes

B0 = 2260k |90~

- (k- k)| (29)

o

where j(r) < J(k). Then we apply the operation on the right-hand side of (27) to
(29) to obtain the longitudinal component:

E ()0 — WHo LArTS
E(k)" ==~ G(k)(l k(2)>k(k J(K)). (30)
This can be simplified to
~ W ¢ 8
(k) = —=5"k(k - J(K)), (31)

in view of (23). On the other hand, the transform of (20) is

E)"” = =260 - J(K), (32)
with g(r)(‘@) - G(k)(m. For 8 = £ this is the same as (31) provided we set
41 A~
Gk = — 4 Kk, (33)

which is the longitudinal Green’s function in k space. The transverse Green’s
function can be found along similar lines and the result is

G(K)"Y = G(k)(1 — kk). (34)
On the other hand, when we write (29) in dyadic form as
E(k) = =22 G(k) - J(k), (35)
4r
it follows that the dyadic Green’s function for the total field is

G(k) —G(k)( K RR) (36)

From (33) and (34) it can then be verified by inspection that
G(K" + Gk = G(k). (37)

5. Transformation to configuration space

We now turn to the evaluation of the transverse and longitudinal Green’s
functions in r space, which generate the transverse and longitudinal components of
the electric field from the current density, as shown in (20). The representation of
the longitudinal Green’s function in k space is given by (33), showing that it is
equal to kk apart from a constant. ThlS dyadic kk also appears on the right-hand
side of (27), if we write this as E(k)'” = (kk) - E(k). The equivalent in r space is
(17), which can be written as

EmnY = Jd3r’6(r ~- ) E®W), (38)
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so that

1

o) = 38(0) = —n(r). (39)

This is the longitudinal delta function, which is the inverse transform of kk.
Therefore, the longitudinal Green’s function is

g0 = e, (40)
which is explicitly
4n 1
([) _ A
g(n' = __3k§ a(r) + —k§r3 (3rr —1). (41)

The transverse part can now be found immediately by noting that

gn" = g(r)—gmn", (42)

where g(r) is given by (5), and the explicit representation is the sum of the four
parts given in (6)—(9). We then obtain

i

g = (1)

(1 — exp (iko7)) |-

(43)

exp (iko7) . )
— + (I - 3rr) e exp (iko7) + W

It is interesting to note that both the longitudinal and transverse components
acquire an 3 part. It should also be mentioned that g(r)m can alternatively be
obtained from its representation in k space, G(k)m = G(k)(I—kk), (34), by
applying directly the inverse integral transform, as in (22). We have verified that
this leads to the same result.

6. The parts of the field in reciprocal space

We shall now split the four parts of the Green’s function into their
transverse and longitudinal components, leading to eight separate contributions.
Just as for the total Green’s function, this splitting is accomplished first in k
space, and then a subsequent inverse transform yields the various components
in r space.

To this end, we need the spatial transforms of the four Green’s functions in
(6)—(9). This can be done by direct integration, e.g. by evaluating the integrals

G(Kk), = Jd%g(r)aF exp(—ik-r), a=$S,N, MorF. (44)

These integrals are rather cumbersome and have been studied in [12]. The result
is
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GlK)gp = 35T (45)
G(K) i = 43 (1 3K) Ty /) (46)
G(K)ygp = 5 (1~ 3KK) T (ko /B)y1 (+7)

4n
k2

o

G(K)pp = (1—kK)G(K) 4+ — (1 — 3KK) (ko /k) - (48)

The %k dependence of these Green’s functions enters through a set of auxiliary
functions 7'(q),p, defined by the integral representations

°dt 3

T(q)nr = fJ g (3 cos t + (t - ;) sin t> exp (igt), (49)
o U

o[ de 3\ . )

T(q)yr = ig ) 3cost+ |t— n sin t | exp (igt), (50)
0
° dt sin t .

T =7 | ( . ) exp (igf), (s1)
0

where ¢ = k,/k. These three universal functions are plotted in figures 1-3 as a
function of 1/¢, which is the wave number k in units of k.
With these Green’s functions, the parts of the field in k space are then

E (), = 2 G (k). (k). (52

It can be shown that the functions T'(¢), obey the sum rule

T(Q)NF + T(Q)MF + T(q)FF = %, (53)

and with this identity we verify that the sum of the Green’s functions is indeed the
Green’s function of the unsplit field:

> G(k), = G(K). (54)

03 Im

4 5
1/q

Figure 1.  Graph of T(q)yp plotted as a function of 1/¢=k/k,. For k< k,, the
imaginary part of T(q)np is identically zero. The real part of T'(q)yy approaches the
value 1/3 for k£ — oo.
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Figure 2. Graph of T(q)yp plotted as a function of 1/q = k/k,. At k = k,, the real part of
T(q)\r has a singularity and the imaginary part vanishes for & < k,.

0 0.5 1 1.5 1/q 2

Figure 3.  Graph of T(q)pp plotted as a function of 1/q = k/k,.

7. The components of the parts of the field in k space

We now seek the Green’s functions which filter out the transverse and long-
itudinal components of the parts, e.g. when operating on the current density, the
result is

E(k)L = -2 G(k)\7 - (k). (55)
v
In k space this splitting is particularly simple since the dyadic operator Kk filters
out the longitudinal part, and therefore the operator I — kk yields the transverse
part. It then follows immediately that the Green’s functions from (45)—(48)
separate as

4n
G(k)gp = — 55 (1 kk), (56)
G0 = — ™ (57)
SE 3R
4
G(k)\y = 5 (1~ kk)T(ky/ ) (58)
8m
G(k)\ = — 5 kKT (o /R (59)
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GO = 5 (1~ KK Tk R (60)
G = 3 RRT (kK (61)
G = (1 k(G000 + 75 Tk B ). (62)
G = — o kKT (koK) (63)

It is interesting to see that the first term of the transverse part of the far-field,
(I — kk)G(k), is just the transverse Green’s function of the total field, as given in
(34). Also, with the sum rule (53), we notice that the Green’s functions for the
transverse (longitudinal) parts add up to the transverse (longitudinal) Green’s
function for the total field.

8. The components of the parts of the field in r space
The final step is to obtain the various Green’s functions in r space. We let
")~ Gk 64
g( )a A ( )aF’ ( )

which generates the 8 component of the « part of the field from the current density
according to

15 1Wlo B8) =

() =2 [a*¥glr = v) () (65)
T

Let us first consider the self- ﬁeld ‘As shown in section 5, we have d(r ) < kk, and

similarly we have &(r )() — kk. Therefore, the Green’s functions for the

components of the self—ﬁeld are

4
g(r)gr = — 5,500, (66)
() RLIPYN()
g0l =~ o, (67)
or more explicitly

8n 1
8Nk =~z 0(0) — 35 (B =D, (68)

) 4 1
g(r)SF g—k(z) ( ) 3k2 3 (3"' - I) (69)

Comparison with the Green’s function of the longitudinal component of the total
field, equation (40), gives

g0l = L g(n)), (70)
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showing that 1/3 of the total longitudinal field ends up in the self-field. On the
other hand, (41) combined with (6) yields

1
k2y3

o]

20" = g(N)gp + 555 (37 =), (71)
where g(r)gp is the delta function contribution to the total field. So, it seems that
the delta function part of the field only contributes to the longitudinal component.
However, the longitudinal component of this self-field only accounts for 1/3 of the
total delta function part of the longitudinal field. This seemingly contradictory
result can be explained by noting that ‘the component of a part’ is not necessarily
the same as ‘the part of a component’, e.g. these operations do not commute. For
instance, the transverse component of the self-field has an #~3 part, which is of the
near-field type. We shall see below that the other 2/3 of the delta function in the
total longitudinal component comes from the near-field. But then, since the near-
field itself does not have a delta function, this implies that the transverse
component of the near-field must have a delta function contribution, even though
the total transverse field does not.
The remaining six Green’s functions will be evaluated by direct integration:

@ __ 1[4 ) exp (ik -
B(P)F = s | RGO exp i) (72)

except for the part (I — RR)G(k) in the transverse component of the far-field, since
we already know that its inverse is g(r)<t> from (43). Then each remaining term to
be inverted has a function T'(ko/k),r in it, for which we shall use the integral
representations from section 6. For a =M or F these functions go to zero
sufficiently fast for £ — oo for the integral in (72) to exist, but for the near-field
we have T(k,/k)yp — 1/3 for k — co. This leads again to delta function con-
tributions, which will be split off first. We write Tng = 1/3 + (g — 1/3) and
consider the effect of the 1/3 first. From (58) and (59) we see that this 1/3 leads to

gm%=£?m”+«L (73)
gm%=—%?mm+b}7 (74)

and here {...} stands for the inverse with T\ replaced by Txg — 1/3. We notice
that this ‘1/3 contribution’ to g(r)g\?F is just the opposite of g(r)(StF, showing that the
total transverse field does not have a delta function indeed. On the other hand, for
the longitudinal component we get from the self-field and near-field

© 0 _ Ao 8T
g(r)se +g(r\r = — 32 o) — 3k55(r) +{...}
411', (//)

and here the first term on the right-hand side is exactly g(r)(é) from (40). There-
fore, all delta functions have been accounted for at this point. It also shows that the
sum of the longitudinal components of the middle- and far-field must equal the
opposite of {...} in (75). Obviously, this is equivalent to the sum rule (53).



Transverse and longitudinal components 765

For the inverse transforms of the terms with a T,r function we proceed by
direct integration. First we consider the longitudinal components, which are of the
form kkT'(k,/k),,p, apart from an overall constant. For the middle- and far-field we
use the integral representations (50) and (51) for Tyr and Tgg, respectively. For
the near-field we replace Txr by Tk — 1/3. From (49) we can derive the following
representation for Txr — 1/3:

1

< dt
T(q)np — 3= —ig Jo 3 (t cos t — sin #) exp (igt). (76)

In the Appendix we show in some detail how these inverse transforms are
performed. The results for the longitudinal components are:

8n 2 .. .
8N = — 5 0(r) + = (If exp (ikor) — I (kor)), (77)
Ok ke
o 21 .. .
g(ryp = — P (rr exp (ikor) — I¢3(kor)), (78)
() 2 o | . 1 . 2
g(r)FF = _W (I — 3rrF) |1 exp (ikor) — fr (exp (ikor) — 1)| + Zlgz(kor). (79)
Here we have introduced the auxiliary functions
QA@:J @9%%@L x>0, n=1,2,..., (80)
1

needed for n = 2, 3 and 4.
The functions (,(x) satisfy the recurrence relation

Gt () = (exp (i) + i3, (¥)), (31)

and therefore they can successively be obtained from (;(x). In terms of the sine
and cosine integrals si(x) and ci(x) this function is [13]

Ci(x) = —ci(x) —isi(x). (82)

By repeated application of (81), going from a given n to higher ones, we find the
asymptotic series

1
M)A PR (Gt
1X 1X (1x)

Cul(x) = _exp (i) +--+|, «xlarge. (83)

Therefore, the leading term of (,(k,7) in the region of large 7 is i exp (iko7)/kor,
independent of n. From (77) we then notice that the longitudinal component of the
near-field has an »~* contribution, and the Green’s function of the longitudinal
component of the middle-field, given by (78), has an #~ part. Interesting about the
longitudinal part of the far-field is that it has no 1/7 component. For the behaviour
at small x, or », we use the familiar results for ci(x) and si(x), which yields

T
G(x)=—y—1In x+%+0(x), x 10, (84)
with v Euler’s constant. Then with (81) we find
1
¢(0) = , m=2,3,.... (85)
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This shows that (,(x) for n =2, 3 and 4 remains finite for x | 0. The functions
G(x), G3(x) and (4(x) are illustrated in figures 4 and 5.

With (81), both the (3(k,#) in (78) and the (4(k,#) in (77) can be expressed in
terms of (;(ko7). When we then add (77)—(79), and add the longitudinal component
of the self-field from (69), we verify that

S ey =gmn. (86)

The Green’s functions for the transverse components of the parts of the field now
follow from

l
g(n)or = (0, — g0, (87)
and the result is
(t 8 1 an . 2
g(r)NF = 9—]?(2)50‘) — W (I — rr) eXp (lkoi’) + WICA‘.(kor)’ (88)
i an . 2i
g\, = r (L= ) exp (ikor) = =5 TG (ko). (89)
wnr €XD (1ko7 2
gk = (-0 S22y
2 oy | . 1 .
+ 3kor? (I—3rr)|i exp (iko7) — fr (exp (ikor) — 1)]. (90)
| 2
0.8 ‘/ Real parts
04 [y 4
\\,\
W N
I R // TN
\\\\\\\’/ g
N
0.4 =
0 2 4 6 8 10

Figure 4.  Plot of the real parts of the functions (y(x), (3(x) and (4(x).

/ Imaginary parts
04 |/

-0.4

Figure 5.  Plot of the imaginary parts of the functions (;(x), (3(x) and (4(x). These
imaginary parts are zero for x = 0.
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9. Electric dipole
As an example, let us consider an electric dipole located in » = 0. The dipole
moment is g(w) and the corresponding current density is

i(F) = —icomd(r). (91)
With (65) we then find for the components of the parts of the field
o _ ke 8
B = g gt 1 (92)

For instance, with (78) and (89), respectively, the longitudinal and transverse
components of the middle-field are found to be

_iko Aa .
E(0\ir = 5 [F(F - 1) exp (ikor) = Ga(kor)] (93)
¢ ik, o .
E(O\r = 5 {1 — F(F- )] exp (ikor) — 26 (Ror) ), (94)

and similar expressions can be written down for the other three parts of the dipole
field. With these explicit results we can now verify by differentiation that these
fields are indeed longitudinal and transverse, e.g.

V x (R =0, (95)
v-E(n\) =o0. (96)

For this we need the derivatives of the (,(x) functions. From the definition (80) it
follows that

(:,,(x)/ =iC1(x), n=2,3,..., (97)

and with the recursion relation (81) this becomes

Cn(x)/ = % [(n—1)C(x) —exp (ix)], n=2,3,..., (98)

expressing the derivative in terms of (,(x) itself.

10. Conclusions

We have studied the dyadic Green’s function which determines the electric
field from a given current density. The electric field naturally separates into four
parts: the self-, near-, middle- and far-field. This separation can be contributed to
four corresponding parts of the dyadic Green’s function. On the other hand, the
electric field can be considered as a sum of a longitudinal and a transverse
component, and this separation can also be accounted for by a corresponding
splitting of the dyadic Green’s function. But then, each of the four parts of the
field, or the corresponding Green’s function, has its own distinct contribution to
both the longitudinal and to the transverse field. We have evaluated the long-
itudinal and transverse components of each part of the field, and this was done
both in configuration space and in reciprocal space. In k space, this splitting
involves a set of three auxiliary functions T\g, Twvr and Tgp, which depend
only on the magnitude of vector k. In r space, the representation of the near-,
middle- and far-field involves the auxiliary functions (4(ko7), (3(ko#) and (o (kor),
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respectively, and these depend only on the magnitude of vector r. A particularly
interesting result is that the Green’s functions of the longitudinal and transverse
components of the near-field acquire a delta function contribution, whereas
the Green’s function for the total near-field has no delta function part. Vice
versa, the Green’s function for the total self-field is proportional to a delta
function, but the Green’s functions for the longitudinal and transverse compo-
nents have a continuous part.

Appendix
The Green’s function of the longitudinal component of the far-field in r space
is the inverse of (63), and with (22) this is

g0} = —Ljd%«kk) T(ko /B) - exp (K- ). (A1)

In order to evaluate this integral we adopt spherical coordinates (&, 0, ¢) in k space,
and we take the polar axis along the vector r. The volume element is
d°k = k? sin #dkdfd¢, and we have exp (ik - r) = exp (ikr cos 0). The only ¢
dependence appears through kk and this leads to

2n
J dpkk = (I — FF)m sin® 6 + FF27 cos® 6. (A2)
0

Then the # dependence comes in as in (A 2), through the volume element, and
through exp (ikr cos 6). Integration over 6 yields

4
g(r )gl):‘ _?J dkk>T T(ko/k)pp

ﬁ% GH-T) (c?zf)k;’) 3 Slg’;}(ff:))] . (A3)

Next we make the change of variables u = kr. This gives for the argument of the T'
function k,/k = k,r/u. Then we substitute the integral representation (51) for
T(kor/u), and subsequently we change the integration variable from ¢ to
v = kort/u. This gives

o __4 ood md’exp(iv) uo\  ker . (uv
&) m’L uJO “ ) cos kor uv st kor

x {ffsm “y 3R - T) <C°SZ“_S“1—“)} (A4)

u u ul

Here, we integrate over u first. Care should be exercised about the lower limit,
u = 0. When integrating by parts several times, the integral can be reduced to a
combination of tabulated integrals. However, various integrated parts do not exist
in the lower limit. Therefore, first we keep the lower limit finite, say u = §, and
then in the end we take 6 | 0. This gives for the integral over u:

dul. Ny =-1281 +#-d1,  p=1, (A5)
0 6 4

Joo »* <[22 0<p<i,
1/p 0, p>1,
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where we have set p = v/k,#. When we substitute (A 5) into (A 4), and change the
integration variable to p we find

2 ! . % exp (ipker
g(Nr = 5 [(1 — 3iF) L dpp exp (ipkor) + IJ dpp(p—f)} (A6)

r 1
The second integral is (;(k.7), and the first one can be evaluated easily. The result
is (79).
For the Green’s function of the longitudinal component of the middle-field we
follow the same procedure. The equivalent of (A 4) becomes

o _ 4[> < exp (iv) uv uv kot . [uv
g(r)MF__EJO duj0 dv = 3 cos Tr + kor_3uv sin s

% |:i’i‘51n u+(3i‘i‘—l) (COSZ’M_SIH u)} (A7)
u u

w3

Here we encounter the problem that strictly speaking the integral over u does not
exist in the upper limit, for one of the terms. In that term we keep the upper limit
u = kmax? finite for the time being. Then the integral over u becomes

o0 Rmax? bis 07 0 S p < 17
J du<...><...):f‘i’pj du sin (pu) sinu—IZ 1, p=1, (A8)
0 0 2/p, p>1.

Substitution into (A 7) then gives, after changing the integration variable to p,

y 2i 4i e _ * exp (ipkor) .
g(r)gw)F = ng(kor) T rr L du sin u Jo de sin (pu). (A9)

Here we integrate over p first, with the result

' ) 2, u> kyr

% ko kor\ 2 /2, o

J ap R Gy~ 1 <“+k’)]+ n/4 u=hor, (A1)
0 b U= Ro¥ 0, U<k07'

Now we encounter the problem that the right-hand side has a singularity at
u = k.7, and when substituted into (A 9) we have to evaluate the integral over u as a
principal value integral around u = k,7. Since the singularity is logarithmic, this
integral exists. The remaining integral over u with the logarithm in it exists for
Rmax — 00. We split the integral in an integral over [0,k,# —¢] and one over
[kor + €,00], integrate by parts, and then take the limit & | 0. This gives

2 00
(u—l—kor) ] :4ko7’J 08 ¢ (A11)

u — Ror o kX —u¥’

J du(sin u) In
0

which is still a principal value integral. In order to evaluate this integral, we extend
the range to u = —o0, close the contour with a semicircle in the upper half of the
complex u plane, avoiding the poles at u = k.7 and u = —k,7 with small semicircles
above the real axis. Then the contour integral is zero, so the integral itself is the
sum of the integrals over the small semicircles. This yields

(“ + k”) 2] = 2 sin (kor). (A12)

u— Ror

J du(sin u) In
0
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Putting everything together then gives for the Green’s function

‘ 2i
g(r)l(\’I)F = k2

[I¢5(kor) — t¥(exp (ikor) — cos (Rmax?))]- (A13)

Here we have taken kny.x — 00 wherever possible. The term with cos (kmax?),
however, does not formally exist. However, for k. large, this term varies rapidly
as a function of ». Since every Green’s function is eventually integrated over, this
term will average to zero. Therefore we can leave it out.

The Green’s function for the longitudinal component of the near-field can be
evaluated along the same lines, with no additional complications.
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