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Abstract

The evanescent part of optical radiation from a localized source decays rapidly with distance. We have studied the

asymptotic behavior of this radiation by means of the Green’s tensor. This tensor can be expressed in terms of four

auxiliary functions Miðq; hÞ, with q the (dimensionless) distance to the source and h the polar angle. We have derived
asymptotic approximations for these functions, with Bleistein’s method, which hold uniformly for all angles h. Our
result generalizes the result of Berry for the evanescent part of the free space scalar Green’s function. We have illus-

trated graphically the accuracy of our approximation. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The electromagnetic radiation field which is
emitted by an oscillating electric dipole or an atom
in free space is usually considered as an outgoing
spherical wave, emanating from the location of the
source [1]. In many practical applications, such as
a radiating atom near a medium, this representa-
tion is not the most convenient due to boundary
conditions at the planar interface. A solution to
this problem is to represent the dipole field as a

superposition of plane waves, each of which sat-
isfies Maxwell’s equations in free space. In this
fashion, the plane waves can be matched across the
boundary by means of the Fresnel coefficients, and
this provides a representation of the solution of
Maxwell’s equations [2–6]. In such an approach,
this superposition, referred to as the angular
spectrum, consists of (radiative) traveling waves
and of exponentially decaying (evanescent) waves.
The traveling part of the electric field has been
studied most extensively, since the far field, which
is amenable to observation by macroscopic detec-
tors, is predominantly determined by the traveling
waves. This far field can be obtained from an an-
gular spectrum representation by means of the
method of stationary phase [7,8], which yields an
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asymptotic approximation for the field at a large
distance from the source.
The evanescent waves, which are generated by

the source, decay in the z-direction and propagate
in the xy-plane. Since these waves decay rapidly,
they only seem to have significance for the optical
near field in the vicinity of the source. When the
source is located near an interface, the interaction
between the source and the medium can be ex-
pected to depend strongly on the evanescent
waves, and this has indeed been found experi-
mentally [9–11]. On the other hand, it is known
that the evanescent waves can survive in the far
zone for observation points that are on the z-axis
or in the xy-plane [12]. Since these directions seem
to have zero angular measure, it was assumed that
this phenomenon was merely a mathematical ar-
tifact. Recently, however, it was shown [13,14] that
there is a finite cylindrical region around the z-
axis, with a diameter of about a fraction of a
wavelength, where the evanescent waves extend
into the far zone. Although the angular width of
such a cylinder vanishes for large distances, its
cross-section does not, and this might indicate that
evanescent waves could be observable in the far
field. More recently it was shown by Berry [15] that
also in the neighborhood of the xy-plane the eva-
nescent waves survive in the far zone over a finite
cross-section. In this paper we generalize Berry’s
approach to derive a uniform asymptotic approx-
imation for the evanescent part of the electric field
of a dipole as a function of the distance r to the
source and uniform in the polar angle h.

2. Green’s tensor and angular spectrum

The electric field of an electric dipole l̂lðxÞ at the
origin of coordinates is most conveniently ex-
pressed in terms of the Green’s tensor c

$ðr;xÞ ac-
cording to

ÊEðr;xÞ ¼ k30
4pe0

c
$ðr;xÞ � l̂lðxÞ: ð1Þ

The angular frequency x indicates a Fourier time
transform and the wave number k0 equals x=c.
Since all spatial dependence of the field is incor-
porated in the Green’s tensor, which is indepen-

dent of the source, it suffices to consider only this
Green’s tensor, defined by

c
$ðr;xÞ ¼ I

$
�

þ 1

k20
rr

�
eik0r

k0r
: ð2Þ

We shall assume r 6¼ 0 throughout. For extended
sources, the electric field can be found from (1) by
superposition. When working out the derivatives
in (2), terms which fall off as r	3, r	2 and r	1 ap-
pear, and these represent the near, middle and far
field, respectively. Each term is proportional to
expðik0rÞ and therefore corresponds to an outgoing
spherical wave.
The angular spectrum representation of c

$ðr;xÞ
can be obtained by means of Weyl’s representation
of the scalar Green’s function [16]

eik0r

r
¼ i

2p

Z
d2kk

eiðkk�rþbjzjÞ

b
: ð3Þ

Here, kk is a vector in the xy-plane and the pa-
rameter b is defined as b ¼ ðk20 	 k2kÞ

1=2
for kk < k0

and b ¼ iðk2k 	 k20Þ
1=2
for kk > k0. Expression (3) is

a superposition of plane waves. When kk < k0 the
corresponding plane wave travels in the direction
of the wave vector ðkk; bÞ for z > 0 and ðkk;	bÞ
for z < 0 without change of amplitude. When
kk > k0 the wave travels in the xy-plane in the di-
rection of kk, and decays exponentially in the z-
direction. In this fashion, the angular spectrum
integral (3) separates the scalar Green’s function
into a traveling and an evanescent part. When
substituted into (2), the dyadic Green’s function
splits similarly. When we bring the derivatives
under the integral and work out the resulting ex-
pression we find the compact representation

c
$ðr;xÞ ¼ i

2pk0

Z
d2kk

1

b
I
$
�

	 1

k20
KK

�
eiK�r; ð4Þ

where we have set K ¼ kk þ bsgnðzÞez for the wave
vector of the partial waves.

3. Evanescent part

The evanescent part of the Green’s tensor now
follows from (4) by restricting the integration over
the kk-plane to the region outside the circle kk ¼ k0.
When using polar coordinates, the angular
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integration can be performed easily, leading to
Bessel functions JnðxÞ. For the radial integral we
make the change of variables kk ¼ k0ð1þ u2Þ1=2, and
we shall adopt dimensionless coordinates with 1=k0
as length scale. The distance to the origin (in con-
figuration space) will be indicated by q ¼ k0r, and
the z-coordinate becomes f ¼ k0z. It is also conve-
nient to introduce q as the dimensionless polar
coordinate in the xy-plane (distance to the z-axis),
e.g., q ¼ k0ðx2 þ y2Þ1=2. Putting everything together
then yields the following expression for the
evanescent part of the Green’s tensor [17]:

c
$ðr;xÞev ¼ 1

2
I
$�
þ ezez

�
Maðq; hÞ

þ 1
2
I
$�
	 ezez 	 2r̂rkr̂rk

�
Mbðq; hÞ

þ 1
2
sgnðfÞ r̂rkez

�
þ ezr̂rk

�
Mcðq; hÞ

þ 1
2
I
$�
	 3ezez

�
Mdðq; hÞ: ð5Þ

Here r̂rk is the radial unit vector in the xy-plane and
sgnðfÞ indicates the sign of f. The coordinate de-
pendence of this tensor appears entirely through a
set of four auxiliary functions, which are all of the
form

Mðq; hÞ ¼
Z 1

0

duf ðuÞJn q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p� �
e	ujfj: ð6Þ

They differ in their f ðuÞ and the order n of the
Bessel function, as shown in Table 1. The q and h
dependence enters here through q ¼ q sin h and
f ¼ q cos h. These four integrals can be expressed
in closed form by means of Lommel functions [18],
but the resulting expressions are cumbersome
[17,19,20] and not very suitable for the study of the
behavior of the tensor for large q.

4. Asymptotic approximation

In this section we derive an asymptotic ap-
proximation for integrals of the general type (6),
for q large, h arbitrary. The q-dependence appears
in the exponential through f ¼ q cos h and in the
argument of the Bessel function as q ¼ q sin h. For
q large we then also have q large, provided we
exclude the z-axis, h ¼ 0 or p. As the first step we
use the asymptotic approximation of the Bessel
functions for large argument:

JnðxÞ 

ffiffiffiffiffi
2

px

r
cos x
h

	 p
4
ð2nþ 1Þ

i
: ð7Þ

Then (6) can be approximated accordingly:

Mðq; hÞ 


ffiffiffiffiffiffi
2

pq

s
Re e	ðip=4Þð2nþ1Þmðq; hÞ
� 


; ð8Þ

where we have set

mðq; hÞ ¼
Z 1

0

du
f ðuÞ

ð1þ u2Þ1=4
eqwðuÞ; ð9Þ

with

wðuÞ ¼ 	uj cos hj þ i sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
: ð10Þ

We therefore need an asymptotic approximation
for integrals of the type (9). In this form, the large
parameter q only appears in the exponent and only
as an overall factor, which is a great simplification.
The critical points of the integral (9) are the

lower limit u ¼ 0, and a possible saddle point of the
function wðuÞ in the complex u-plane. For a saddle
point we have w0ðuÞ ¼ 0, and it is easily verified
from (10) that this saddle point is located at
u0 ¼ 	ij cos hj for a given h. Although the integra-
tion contour does not pass through the saddle
point, for h ! p=2 the saddle point approaches the

Table 1

Function f ðuÞ, order n and parameters for the four integrals

Maðq; hÞ Mbðq; hÞ Mcðq; hÞ Mdðq; hÞ

f ðuÞ 1 	ð1þ u2Þ 2u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
	u2

n 0 2 1 0

f ð0Þ 1 )1 0 0

f ðu0Þ 1 	 sin2 h 	ij sin 2hj cos2 h
f 0ð0Þ 0 0 2 0
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integration endpoint u ¼ 0 from the negative
imaginary axis. It can then be anticipated that this
saddle point gives a contribution which can be
comparable to the contribution from the endpoint.
For situations like this, an asymptotic approxima-
tion can be obtained with Bleistein’s method [21–
23], and this was applied recently by Berry [15] to
find a uniform asymptotic approximation in h for
the scalar Green’s function (our Maðq; hÞ), which
smoothly varies in the neighborhood of h ¼ p=2.
In Bleistein’s method, a change of variables

u ! t is made, and in such a way that the exponent
wðuÞ is mapped onto a quadratic form. The ap-
propriate transformation here is

wðuÞ ¼ 	1
2
t2 	 at þ i sin h; ð11Þ

with

a ¼ ð1þ iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 sin h

p
: ð12Þ

In this way, the new saddle point appears at
t ¼ 	a. The contour of integration C in the com-
plex t-plane starts at the origin, lies in the fourth
quadrant and approaches a line under at most 45�
with the positive real axis, as shown in Fig. 1. Next
we make a linear approximation of the integrand,
excluding the exponential factor. We set

f ðuÞ
ð1þ u2Þ1=4

du
dt


 a0 þ a1t; ð13Þ

with u ¼ uðtÞ, and the constants a0 and a1 are
chosen such that this approximation is exact in the

critical points t ¼ 0 and t ¼ 	a. From the trans-
formation (11) we see that

du
dt

¼ 	 t þ a
w0ðuÞ ; ð14Þ

and since t ¼ 0 corresponds to u ¼ 0 we find from
(13) with t ¼ 0:

a0 ¼
ð1þ iÞf ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin h

p : ð15Þ

For t ¼ 	a, the right-hand side of (14) has to be
evaluated with a limit procedure. This gives
ðdz=dtÞt¼	a ¼

ffiffi
i

p
sin h, and then with (13) we find

a1 ¼
f ð0Þ 	 f ðu0ÞbðhÞ

j cos hj ; ð16Þ

where we have set

bðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
sin hð1þ sin hÞ

q
: ð17Þ

The values of f ð0Þ and f ðu0Þ for the various inte-
grals are listed in Table 1.
With the approximation (13) the integral (9)

becomes in the t-plane

mðq; hÞ 
 eiq
Z
C
dtða0 þ a1tÞe	ð1=2Þt2	at: ð18Þ

The integrand is analytic and with Cauchy’s the-
orem the contour can be brought back to the real
axis. The remaining integral can then be expressed
in terms of the complementary error function. The
asymptotic approximation for mðq; hÞ is then
found to be, after some rearrangements,

mðq; hÞ 
 e
iq

jfj f ð0Þ½ 	 f ðu0ÞbðhÞ�

þ f ðu0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p sin h
2q

s
ei qþðp=4Þð Þerfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðq	 qÞ

ph i
; ð19Þ

and with (8) we find for Mðq; hÞ

Mðq; hÞ 
 1

jfj

ffiffiffiffiffiffi
2

pq

s

�Re f ð0Þ½
�

	 f ðu0ÞbðhÞ�ei q	ðp=4Þð2nþ1Þð Þ�
þ 1
q
Re f ðu0Þei q	ðnp=2Þð Þerfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðq	 qÞ

ph in o
:

ð20Þ

Fig. 1. Illustration of the contour of integration C for the in-

tegral (18) in the complex t-plane. The curve approaches the

straight line through the saddle point P, and this line slopes

down under an angle of h=2 (for h < p=2; otherwise the angle is
ðp 	 hÞ=2). The parametrization of C follows from solving

transformation (11) for tðuÞ.
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With the values of f ð0Þ and f ðu0Þ from Table 1,
this determines the asymptotic approximation of
the four auxiliary functions in the Green’s tensor,
uniform through h ¼ p=2.
Expression (20) is constructed to be uniform

near h ¼ p=2. This implies that it should hold for
all h, except, perhaps, for h approaching 0 or p.
First we observe that for h ! p=2 we have jfj ! 0,
and it appears that the first term on the right-hand
side is undefined. However, when we approach the
xy-plane we have u0 ! 0, and therefore
½f ð0Þ 	 f ðu0ÞbðhÞ� ! 0. Apparently, the value near
the xy-plane has to be investigated with a limit
procedure. After we expand f ðu0Þ in a Taylor se-
ries around u ¼ 0, we find the following limit:

lim
h!p=2

1

j cos hj f ð0Þ½ 	 f ðu0ÞbðhÞ� ¼ f 0ð0Þi: ð21Þ

Furthermore, in this limit we have q ¼ q, and
erfcð0Þ ¼ 1, and we can use that f ð0Þ and f 0ð0Þ are
real. The result (20) then reduces to

Mðq; p=2Þ 
 f ð0Þ
q
cos q
�

	 np
2

�
þ 1
q

ffiffiffiffiffiffi
2

pq

s
f 0

� ð0Þ cos q
h

	 p
4
ð2n	 1Þ

i
: ð22Þ

This shows that in the xy-plane the leading term
will in general be Oðq	1Þ, which is a far field con-
tribution. Only if f ð0Þ ¼ 0, the leading term be-
comes Oðq	3=2Þ, which falls off faster than the far
field.

5. Uniform asymptotic approximation

For h 6¼ p=2 and q large, we have
erfc½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðq	 qÞ

p
� ¼ erfc½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iqð1	 sin hÞ

p
� ! 0, and

only the first term on the right-hand side of (20)
survives. This term is Oðq	3=2Þ, provided not both
f ð0Þ and f ðu0Þ vanish. If h approaches 0 or p,
approximation (20) becomes invalid, since in this
limit we have q ! 0 whereas we used explicitly
that q is large. On the other hand, for q large, both
sides of (7), with x ¼ q, are asymptotically equiv-
alent. On the right-hand side of (20), the term
which is proportional to f ð0Þ contains exactly the
approximation of JnðqÞ, so as long as q is large we

can replace this part again with JnðqÞ. The result
then becomes

Mðq; hÞ 
 f ð0Þ
jfj JnðqÞ 	

1

q3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1	 sin hÞ
p

Re f ðu0Þei q	p
4
ð2nþ1Þ½ �

n o
þ 1
q
Re f ðu0Þei q	np

2ð Þerfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðq	 qÞ

ph in o
;

ð23Þ

where we have used (17). With some further re-
arrangements this can be written as

Mðq; hÞ 
 f ð0Þ
jfj JnðqÞ þ

1

q
Re f ðu0Þei q	np

2ð Þ
 

� erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðq	 qÞ

ph i(

	 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piðq	 qÞ

p e	iðq	qÞ

)!
: ð24Þ

We now claim that in this form the asymptotic
approximation is uniform for all h. To show this,
we go back to (6) and integrate by parts. This
yields

Mðq; hÞ ¼ f ð0Þ
jfj JnðqÞ þ

1

jfj

Z 1

0

due	ujfj

� d

du
f ðuÞJn q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p� �h i
ð25Þ

as an exact integral. Repeated integration by parts
then gives an asymptotic series in 1=jfj, which
holds for jfj large, but q arbitrary. We see that the
first term on the right-hand side of (24) is the first
term in this asymptotic series. On the other hand,
with the asymptotic series for the complementary
error function [24] we have

erfcðzÞ 	 1

z
ffiffiffi
p

p e	z2 ¼ 	 1

2z3
ffiffiffi
p

p e	z2 1

�
þ O

1

z2

� ��
;

ð26Þ
needed for z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðq	 qÞ

p
. For q large, this be-

comes Oðq	3=2Þ, and the additional 1=q makes the
second term on the right-hand side of (24) order
q	5=2. Since the first term is Oðq	3=2Þ, the second
term can be neglected for jfj large. This shows that
(24) and (25) are asymptotically equivalent for jfj
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large. Since (24) was already shown to be correct
for q large, this proves that it holds for q large, any
h, making this a true uniform asymptotic ap-
proximation. It should be noted though that the
case h ! p=2 still has to be considered as a limit,
with the result given by (22), or equivalently by

Mðq; p=2Þ 
 f ð0Þ
q
cos q
�

	 np
2

�
	 f 0ð0Þ

q
Jnþ1ðqÞ:

ð27Þ

6. The Mðq; hÞ functions of the Green’s tensor

The general result (24) can be simplified further
for the four integrals Ma, Mb, Mc and Md in
c
$ðr;xÞev, Eq. (5). To this end, we introduce the
universal function of q and h:

nðq; hÞ ¼ j cos hjRe eiq
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

piðq	 qÞ
p e	iðq	qÞ

( 

	 erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðq	 qÞ

ph i)!
: ð28Þ

The overall factor of j cos hj is included to keep this
function finite for h ! p=2. We can rewrite (28) as

nðq; hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin h

pq

s
cos q
�

	 p
4

�

	 j cos hjRe eiqerfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðq	 qÞ

ph in o
; ð29Þ

from which we find for h ! p=2:

nðq; p=2Þ ¼

ffiffiffiffiffiffi
2

pq

s
cos q
�

	 p
4

�
; ð30Þ

which is asymptotically equal to J0ðqÞ. It then
follows immediately that near h ¼ p=2 this func-
tion is of order q	1=2. On the other hand, from (28)
and (26) we see that nðq; hÞ ¼ Oðq	3=2Þ for h 6¼ p=2.
Function nðq; hÞ is shown in Fig. 2 as a function of
h, for various values of q.
With (24) and the parameters in Table 1 we now

find the asymptotic result for the parts of the
Green’s tensor

Maðq; hÞ 

1

jfj ½J0ðqÞ 	 nðq; hÞ�; ð31Þ

Mbðq; hÞ 
 	 1

jfj ½J2ðqÞ þ sin
2 hnðq; hÞ�; ð32Þ

Mcðq; hÞ 

2 sin h

q
nðq; hÞ; ð33Þ

Mdðq; hÞ 
 	 j cos hj
q

nðq; hÞ; ð34Þ

with q ¼ q sin h as the arguments of the Bessel
functions. For h ¼ p=2 we obtain from (27) the
limiting values

Maðq; p=2Þ 

cos q
q

; ð35Þ

Mbðq; p=2Þ 

cos q
q

; ð36Þ

Mcðq; p=2Þ 
 	 2
q
J2ðqÞ; ð37Þ

Mdðq; p=2Þ 
 0: ð38Þ
This shows that near the xy-plane Ma and Mb are
Oðq	1Þ, e.g., they contribute to the far field,
whereas Mc decays as Oðq	3=2Þ and Md decays even
faster. It is interesting to note that in the xy-plane
the exact values are known for all q [13,17]. It
appears that the expressions above for Ma and Mc

are exact for all q, and the other two have an un-
resolved part of Oðq	2Þ.
For h 6¼ p=2, we have nðq; hÞ ¼ Oðq	3=2Þ, and

each term in (31)–(34) containing nðq; hÞ is
Oðq	5=2Þ. Since the uniform asymptotic approxi-
mation is only accurate up to Oðq	3=2Þ, these terms
should be neglected. We then find

Fig. 2. Graphs of the universal function nðq; hÞ, defined by (28),
for q ¼ 2, 6 and 20.
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Maðq; hÞ 

1

jfj J0ðqÞ; ð39Þ

Mbðq; hÞ 
 	 1

jfj J2ðqÞ; ð40Þ

Mcðq; hÞ 
 Mdðq; hÞ 
 0: ð41Þ

Since the Bessel functions are Oðq	1=2Þ for q large,
we see that Ma and Mb are Oðq	3=2Þ whereas the
other two functions vanish. This typical Oðq	3=2Þ
dependence has been found before [14]. For large q
we also have J2ðqÞ 
 	J0ðqÞ, as follows from (7),
and therefore we have Mbðq; hÞ 
 Maðq; hÞ. From
the point of view of the Green’s tensor, near the
xy-plane it has a far field part, Oðq	1Þ, and this
goes over smoothly into the Oðq	3=2Þ dependence
away from the xy-plane. Apparently, there is a
layer near the xy-plane where the evanescent
waves survive in the far field. This region is de-
termined by the function nðq; hÞ. This function is
Oðq	1=2Þ whenever the erfcðzÞ has not yet reached
its asymptotic value given by (26), and this is for

q	 qK 1. Since q ¼ ðq2 þ f2Þ1=2, the thickness of
the layer in the z-direction is about jfj 
 ffiffiffi

q
p
, for a

given q. It is interesting to notice that the layer
thickness becomes larger for greater distances
from the source. The angular width Dh, however,
is Dh 
 jfj=q and this is Dh 
 1= ffiffiffi

q
p
. Conse-

quently, the angular width vanishes for q large,
even though the corresponding layer thickness
grows indefinitely with

ffiffiffi
q

p
.

The typical Oðq	3=2Þ behavior from the previous
paragraph is based on the assumption of q large,
which is equivalent to h 6¼ 0 or p. When h ! 0 or
p, e.g., when the field point becomes close to the z-
axis, the character of the Bessel functions changes.
We then have J0ðqÞ 
 1 and J2ðqÞ 
 0. Then (39)
becomes

Maðq; 0 or pÞ 
 1
q
; ð42Þ

and the other three vanish entirely. Also for the z-
axis, the Mðq; hÞ integrals can be evaluated in
closed form, and it appears that (42) holds exactly.
It can also be shown that Ma ¼ Mb ¼ 0, so this
asymptotic result is also exact. Only the exact va-
lue for Md has an Oðq	3Þ contribution on the z-
axis, which is not resolved properly with the

asymptotic approximation. We notice that also on
the z-axis the leading contribution is of the far field
type, whereas a distance away from the z-axis the q
dependence is Oðq	3=2Þ. The transition here is de-
termined by the value of q where the asymptotic
behavior of J0ðqÞ and J2ðqÞ sets in. This occurs at
q 
 1, so at a radial distance of about a wave-
length from the z-axis. Therefore, the far-field be-
havior of the evanescent waves is dominant in a
cylindrical region around the z-axis. Again, the
corresponding angular width vanishes asymptoti-
cally, but the cross-section of the cylinder remains
finite for all jfj, and the radius of this cylinder is of
the order of about a wavelength.
Fig. 3 shows the exact Maðq; hÞ and its asymp-

totic approximation (31) as a function of h for
q ¼ 2p. Here the distance to the source is only one
wavelength, and the approximation already seems
excellent, except close to p=2. The limiting value
(35) for h ! p=2 is actually exact for all q, and
therefore one would expect that the agreement
near p=2 would be better. However, (35) follows
from (31) under the assumption that q is large, and
apparently q ¼ 2p is too small for (35) to set in.
Fig. 4 shows that the approximation near p=2
improves rapidly with increasing q. A result for
Mbðq; hÞ is shown in Fig. 5, and it appears that the
approximation near h ¼ p=2 is less accurate than
the corresponding approximation for Maðq; hÞ
from Fig. 4 (both are shown for q ¼ 10p). As the

Fig. 3. Curve (a) shows the exact Maðq; hÞ for q ¼ 2p and curve
(b) is the asymptotic approximation from (31). The deviation

near h ¼ p=2 is a result of the fact that q is not yet large enough
for the asymptotic approximation to be accurate for this angle.
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value of q increases, the approximation for
Mbðq; hÞ improves correspondingly. The approxi-
mation for Mcðq; hÞ is Oðq	3=2Þ near the xy-plane
but Oðq	5=2Þ away from the xy-plane, as follows
from (33). Since the asymptotic approximation is
constructed to be accurate up to order q	3=2, but
not further, the approximation for Mcðq; hÞ can
only be expected to be accurate near p=2, but not
for smaller angles. Fig. 6 shows that this is indeed
the case. It is interesting to notice that here we do
not see the slight deviation near p=2 due to the
finite value of q, as in Figs. 3 and 4. The function
Mdðq; hÞ is Oðq	5=2Þ for h 6¼ p=2, which is asymp-
totically negligible. Near the xy-plane it is
Oðq	3=2Þ, as seen from (34), but the overall cos h

makes Mdðq; hÞ vanish for h ¼ p=2. Therefore,
Mdðq; hÞ can be neglected for all h.
The evanescent part of the Green’s tensor fol-

lows after substitution of Ma, Mb and Mc from
(31)–(33) into expression (5) for c

$ðr;xÞev. To
leading order, the tensor becomes Oðq	1Þ near the
z-axis and near the xy-plane, and Oðq	3=2Þ else-
where. These leading order-contributions come
from Ma and Mb only, and it might appear that Mc,
which is Oðq	3=2Þ near the xy-plane and negligible
elsewhere, can be neglected entirely. This is how-
ever not the case. The tensor c

$ðr;xÞev couples the
Cartesian coordinates of the dipole moment to the
Cartesian coordinates of the electric field, as
shown in (1). As seen in (5), the M functions
couple different components of the two vectors.
For instance, let l̂lðxÞ / ex, consider a field point
on the x-axis, r ¼ xex, and then evaluate the z-
component of the electric field. This gives a term of
the form

ez � c
$ðxex;xÞev � ex
h i

¼ 1
2
sgnðfÞMcðq; p=2Þ

¼ 	 sgnðfÞ
q

J2ðqÞ; ð43Þ

and this only contains the function Mc. Since this
Oðq	3=2Þ term is the leading term for this field
component, it should be retained, even though the
order of the entire tensor at this field point is
Oðq	1Þ.

Fig. 4. The exact Maðq; hÞ for q ¼ 10p and its approximation.
As compared to Fig. 3, the approximation is now also virtually

perfect near h ¼ p=2.

Fig. 5. Curves (a) and (b) illustrate the exact and approximate

Mbðq; hÞ, respectively, for q ¼ 10p.

Fig. 6. Exact and approximate function Mcðq; hÞ for q ¼ 10p.
This function only approximates the exact result in the neigh-

borhood of h ¼ p=2.
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7. Conclusions

Electromagnetic radiation emitted by a local-
ized source is a superposition of traveling and ev-
anescent waves, when represented by an angular
spectrum. We have studied the asymptotic behav-
ior, for large distances from the source, of the
evanescent component by means of the Green’s
tensor. An asymptotic approximation was derived,
which holds uniformly for all observation (or
emission) angles. Our result generalizes earlier
expressions for the scalar Green’s function, which
only held for large z-coordinates or only far away
from the z-axis. The asymptotic approximations of
the four auxiliary functions Maðq; hÞ, Mbðq; hÞ,
Mcðq; hÞ and Mdðq; hÞ that occur in the Green’s
tensor could all be expressed in terms of a single,
universal function nðq; hÞ and low-order Bessel
functions, as shown in (31)–(34). By considering
the q-dependence of these functions, we have
identified the contribution of each to the far field.
It appeared that only Ma and Mb contribute to the
far, Oðq	1Þ, field, and only near the z-axis and near
the xy-plane. Functions Maðq; hÞ, Mbðq; hÞ and
Mcðq; hÞ contribute all to the more typical Oðq	3=2Þ
behavior of evanescent radiation. It appeared that
function Mdðq; hÞ is asymptotically negligible for
all angles. We have illustrated numerically that
already for a few wavelengths away from the
source our asymptotic approximation is accurate
within graphing resolution.
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