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Traveling and evanescent parts of the
electromagnetic Green’s tensor
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The angular spectrum representation of the electromagnetic Green’s tensor has a part that is a superposition
of exponentially decaying waves in the 1z and 2z directions (evanescent part) and a part that is a superpo-
sition of traveling waves, both of which are defined by integral representations. We have derived an
asymptotic expansion for the z dependence of the evanescent part of the Green’s tensor and obtained a closed-
form solution in terms of the Lommel functions, which holds in all space. We have shown that the traveling
part can be extracted from the Green’s tensor by means of a filter operation on the tensor, without regard to the
angular spectrum integral representation of this part. We also show that the so-called self-field part of the
tensor is properly included in the integral representation, and we were able to identify this part explicitly.
© 2002 Optical Society of America
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1. INTRODUCTION
Emission of electromagnetic radiation by a localized cur-
rent density j(r, t) is most conveniently described by
means of a Green’s tensor gJ(r, v). The emitted electric
field E(r, t) is assumed to have a temporal Fourier trans-
form Ê(r, v); e.g., the field is represented as

E~r, t ! 5
1

p
ReE

0

`

dvÊ~r, v!exp~2ivt !, (1)

and a similar expression holds for the current density.
The solution of Maxwell’s equations can then be written
in the form (details in Section 2)

Ê~r, v! 5
ivmo

4p
E d3r8gJ~r 2 r8, v! • ĵ~r8, v!. (2)

For atomic or molecular sources, the main interest is usu-
ally in the properties of the solution in the radiation (far)
zone, since that is where the field is measured with detec-
tors of macroscopic size. A common approach is to ex-
pand the Green’s tensor in multipole fields, leading to the
characteristic angular distribution patterns for the radi-
ated power. However, in the presence of boundaries this
method becomes cumbersome as a consequence of the fact
that the multipole fields have a very specific spatial de-
pendence, which will not be compatible with the boundary
conditions at hand. With the rapidly developing experi-
mental techniques in near-field (nano-scale) optics,1–6 it
has become feasible to detect radiation with a spatial
resolution of approximately an optical wavelength in the
vicinity of a source, which is typically located near a di-
electric or metallic medium. This situation necessitates
that different representations of the solution of Maxwell’s
equations that are better adapted to the study of electro-
magnetic radiation in the neighborhood of the radiating
source have to be employed.
0740-3232/2002/081701-11$15.00 ©
When the source is located near a dielectric medium,
the emitted radiation will partially reflect at the inter-
face, and the total field in the neighborhood of the source
is the sum of Ê(r, v) from Eq. (2) and the reflected field,
leading to interference. It then seems tempting to adopt
a spatial Fourier transform of the Green’s function,7

yielding a superposition of traveling plane waves of the
form exp@i(k • r 2 vt)#. If we denote by ko 5 v/c the
wave number of the radiation corresponding to frequency
v, then we note that, in general, waves with k Þ ko will
contribute to the superposition. This implies that the
partial waves do not satisfy the free-space Maxwell equa-
tions individually, rendering the applicability of this ap-
proach limited. A solution to this problem is to adopt a
two-dimensional spatial Fourier transform, say, in x and y
but not in z, leading to waves of the form exp(iki • r),
with ki a vector in the xy plane. The z component of the
wave vector is then chosen is such a way that the disper-
sion relation ko 5 v/c is satisfied by each wave individu-
ally. To be specific, for a given ki and a given ko , we im-
pose the constraint k i

2 1 kz
2 5 ko

2 on the z component of
the wave vector. In this fashion we obtain an expansion
in traveling waves with kz 5 6(ko

2 2 k i
2)1/2, but, in addi-

tion, waves with kz 5 6i(k i
2 2 ko

2)1/2 appear, in the case
that k i . ko . These are evanescent waves that decay in
the z direction and travel in the xy plane. In this con-
struction the partial waves satisfy the free-space Maxwell
equations, and each partial wave of the expansion can be
considered separately. Especially in the situation of a
source near a medium, the surface of which is then taken
as the xy plane, this decomposition is extremely useful.
The reflection amplitudes are the well-known Fresnel co-
efficients, and the reflected field becomes a superposition
of traveling and evanescent waves. This method has
been applied successfully to obtain the radiation field for
an electric dipole near a mirror or dielectric8–11 and near
a nonlinear medium.12
2002 Optical Society of America
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These superpositions of traveling and evanescent
waves are commonly referred to as angular spectrum rep-
resentations, and they have been studied extensively.13,14

Previously, the primary goal has been to find the
asymptotic far-field solution, which can be obtained with
the method of stationary phase.15,16 More recently,17,18

attention has shifted to the separate contributions of the
traveling and evanescent waves to the angular spectrum.
In the far field, obviously the traveling waves dominate,
whereas the near field is determined mainly by the eva-
nescent components of the angular spectrum. It is well
known, for instance, that the decay rate of an electronic
transition (inverse lifetime of an excited state) in an atom
located near a medium can acquire a large contribution
from evanescent waves owing to the coupling to plasmon
modes in the substrate.19 Such plasmon modes have
been studied extensively,20 and it has been confirmed
experimentally21–22 that indeed a large portion of the
atomic decay rate is due to the presence of evanescent
waves in the dipole radiation. As for the far field, there
has been some controversy in the literature as to whether
the evanescent waves contribute at all.23–26

In this paper we investigate in more detail the travel-
ing and evanescent parts of the electromagnetic Green’s
function. After introducing the Green’s tensor formalism
in Section 2 and its angular spectrum representation in
Section 3, we first show how the self-field is represented
by the angular spectrum, an issue that has largely been
neglected in the literature. We then derive an
asymptotic expansion of the evanescent part to exhibit
clearly the contribution to the far field. Also, the inte-
grals representing the evanescent field are evaluated ana-
lytically for all points in space, which could prove useful
for the study of the near field. Finally, it is shown that
the traveling part of the tensor can be obtained by means
of a filter operation on the tensor.

2. GREEN’S TENSOR
For a given localized current density ĵ(r, v), the solution
of Maxwell’s equations for the electric field is given by

Ê~r, v! 5
ivmo

4p
E d3r8g~r 2 r8, v! ĵ~r8, v!

1
ivmo

4pko
2 ¹F¹ • E d3r8g~r 2 r8, v! ĵ~r8, v!G ,

(3)

where mo is the permeability of free space and ko 5 v/c.
Here g(r, v) is the scalar free-space Green’s function for
the Helmholz equation:

g~r, v! 5 exp~ ikor !/r. (4)

To cast the solution for Ê(r, v) into the form of Eq. (2), we
need to move the differential operators in the last term on
the right-hand side of Eq. (3) under the integral sign.
The singularity at r8 5 r then yields an extra term,27 and
when we bring the result into dyadic form, we obtain the
result
Ê~r, v! 5 2
i

3eov
ĵ~r, v!

1
ivmo

4p
E d3r8dJ~r 2 r8, v! • ĵ~r8, v!. (5)

The first term on the right-hand side is due to the singu-
larity of the scalar Green’s function, and this contribution
to the electric field is called the self-field. Usually, this
term is omitted, since it is present only inside the source.
However, in the near-field optics literature this term has
attracted some attention lately,28,29 and it should be re-
tained for mathematical consistency.30 The remaining
parts are combined in the second term, where the tensor
dJ(r, v) is defined by

dJ~r, v! 5 S IJ 1
1

ko
2 ¹¹ D g~r, v!, (6)

in terms of the unit tensor IJ and the scalar Green’s func-
tion. Comparison with Eq. (2) then shows that the elec-
tromagnetic Green’s tensor gJ(r, v) can be written as

gJ~r, v! 5 2
4p

3ko
2 d ~r! IJ 1 dJ~r, v!. (7)

3. ANGULAR SPECTRUM
The scalar Green’s function g(r, v) can be represented as
a two-dimensional Fourier integral,31

g~r, v! 5
i

2p
E d2ki

1

b
exp~ iki • r 1 ibuzu!, (8)

which is commonly referred to as Weyl’s representation.
The parameter b is defined by

b 5 H Ako
2 2 k i

2, k i , ko

iAk i
2 2 ko

2, k i . ko

, (9)

which shows that g(r, v) is now written as an integral
over traveling and evanescent scalar waves. The Green’s
tensor gJ(r, v) can be represented in a similar way. The
easiest way to derive its representation is probably by use
of Eq. (8) and substitution of this result in Eq. (6) for
dJ(r, v). Care should be exercised here concerning the
self-field contribution. This part in Eq. (7) for gJ(r, v)
comes from the singularity in the integrand of the second
term on the right-hand side of Eq. (3). However, when
we use representation (8) for g(r, v) in Eq. (3), then the
singularity at r8 5 r disappears, and the differential op-
erators can be brought freely under the integral. There-
fore the proper representation is

gJ~r, v! 5
i

2p
E d2ki

1

b S IJ 1
1

ko
2 ¹¹ D

3 exp~ iki • r 1 ibuzu!. (10)

Working out the derivatives explicitly then gives the well-
known result32
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gJ~r, v! 5 2
4p

ko
2 d ~r!ezez 1

i

2p
E d2ki

1

b

3 S IJ 2
1

ko
2 KKD exp~ iK • r!, (11)

where we have set

K 5 ki 1 b sgn~z !ez . (12)

It is interesting to note that a new delta function appears,
but this one is not the same as the one in Eq. (7), repre-
senting the self-field. The delta function in Eq. (11)
comes from differentiating uzu twice with respect to z.
Since the d (r) part in Eq. (11) is not the self-field from
Eq. (7), there should be an additional d (r) contribution in
the remaining integral over ki . We shall show this ex-
plicitly in Section 7.

The angular spectrum representation [Eq. (11)] has a
very transparent interpretation. Each partial wave
has wave vector K, and it follows from Eqs. (12) and (9)
that K • K 5 ko

2. Therefore each partial wave has
the same wave number ko , and the corresponding plane
wave is either traveling or evanescent, depending on the
value of k i compared with ko . Also, when gJ(r, v) acts
on the current density ĵ, as in Eq. (2), then the electric
field of the partial wave with wave vector K is propor-
tional to ĵ 2 ko

22K(K • ĵ), and, with K • K 5 ko
2, this

shows K • @ ĵ 2 ko
22K(K • ĵ)# 5 0; e.g., the electric field of

the partial wave is transverse.

4. TRAVELING AND EVANESCENT PARTS
Whether a plane wave exp(iK • r) is traveling or evanes-
cent depends on the z component of K and therefore on b.
It follows from Eq. (9) that partial waves that have their
vector ki inside the disk 0 < k i , ko in the ki plane are
traveling and waves with k i . ko are evanescent. Since
this criterion depends only on k i , the magnitude of ki ,
there is no reason for the present discussion to retain the
dependence on the polar angle of vector ki in the ki plane.
When polar coordinates (k i , f̄) are used, the f̄ depen-
dence enters only through K, and the integral over f̄ can
be performed. A great simplification in the notation fol-
lows by use of dimensionless variables. We shall use 1/ko
as the length scale, and we introduce a 5 k i /ko ,
r 5 kor i , z 5 koz, b̂ 5 b/ko , and gJ(r, v) 5 gJ(r, v)/ko .
So a is the parameter that distinguishes between travel-
ing waves (0 < a , 1) and evanescent waves (a . 1),
and r and z are the dimensionless cylinder coordinates of
the field point r. The Green’s tensor has an overall factor
of ko when everything else is expressed in dimensionless
variables, so the introduction of gJ also simplifies the no-
tation.

Integration over f̄ yields
gJ~r, v! 5 2
4p

ko
3 d ~r!ezez 1

1

2
~ IJ 1 ezez!M0~r, z!

1
1

2
sgn~z!~ r̂iez 1 ezr̂i!M1~r, z!

1
1

2
~ IJ 2 ezez 2 2 r̂ir̂i!M2~r, z!

1
1

2
~ IJ 2 3ezez!N~r, z!. (13)

The dyadic parts of the Green’s tensor are just combina-
tions of IJ, ez , and r̂i (the radial unit vector in the xy
plane). The dependence on the field point (r, z) enters
through sgn(z) and a set of auxiliary functions M0 , M1 ,
M2 , and N. These functions are defined by the following
integral representations:

M0~r, z! 5 iE
0

`

da
a

b̂
J0~ar!exp~ ib̂uzu!, (14)

M1~r, z! 5 2E
0

`

daa2J1~ar!exp~ ib̂uzu!, (15)

M2~r, z! 5 2iE
0

`

da
a3

b̂
J2~ar!exp~ ib̂uzu!, (16)

N~r, z! 5 iE
0

`

daab̂J0~ar!exp~ ib̂uzu!. (17)

The r dependence enters through the Bessel functions
Jn(ar), whereas all z dependence is contained in the fac-
tors exp(ib̂uzu) in the integrands. For the time being, we
shall assume z Þ 0, since the last three integrals do not
exist in the upper limit for z 5 0.

Since parameter a distinguishes between traveling and
evanescent waves, we can readily identify both parts.
For instance, the evanescent contribution to M0(r, z) is

M0~r, z!ev 5 E
1

`

da
a

~a2 2 1 !1/2 J0~ar!

3 exp~2uzuAa2 2 1 !, (18)

and so on. In this way, the Green’s tensor can be written
as

gJ~r, v! 5 2
4p

ko
3 d ~r!ezez 1 gJ~r, v!tr 1 gJ~r, v!ev,

(19)

and the traveling and evanescent parts follow when the
integration range for a is limited to [0, 1) and (1, `), re-
spectively, in Eqs. (14)–(17).

The integrals M0 and M2 have a factor 1/b̂ in their
integrands, so these integrands have a singularity
for a → 1. Since this is just on the borderline of a 5 1,
these singularities appear in both the traveling and
the evanescent parts. It is easy to see, however, that
these singularities are integrable. For instance, if we set
a2 5 1 1 u2 in Eq. (18), we find the representation
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M0~r, z!ev 5 E
0

`

duJ0~rA1 1 u2!exp~2uuzu!, (20)

and the singularity has disappeared here. Similar trans-
formations can be made for the other integrals with sin-
gularities. It is interesting to note that Eq. (20) has the
form of a Laplace transform, so M0(r, z)ev is the Laplace
transform of J0@r(1 1 u2)1/2#, with uzu as the Laplace pa-
rameter. The other three evanescent parts can also be
written as Laplace transforms.

5. AUXILIARY FUNCTIONS
Explicit expressions for the integrals in Eqs. (14)–(17) can
be found easily. The Green’s tensor gJ(r, v) is given by
Eq. (7), with dJ(r, v) from Eq. (6). Evaluating the deriva-
tives in dJ(r, v) and expressing the result in terms of the
dimensionless radial distance q,

q 5 kor 5 Ar2 1 z2, (21)

then gives

gJ~r, v! 5 2
4p

3ko
3 IJd ~r!

1 IJS 1 1
i

q
2

1

q2D exp~ iq !

q

2 r̂r̂S 1 1
3i

q
2

3

q2D exp~ iq !

q
, (22)

where r̂ 5 r/r. This vector can be written in dimension-
less cylinder coordinates as

r̂ 5
1

q
~r r̂i 1 zez!. (23)

Comparison of gJ(r, v) in Eq. (22) to the expression for
gJ(r, v) in Eq. (13) then yields a set of four equations for
the unknown integrals. Solving the set gives the result

M0~r, z! 5
exp~ iq !

q
, (24)

M1~r, z! 5 2
2ruzu

q3 S 1 1
3i

q
2

3

q2D exp~ iq !, (25)

M2~r, z! 5
r2

q3 S 1 1
3i

q
2

3

q2D exp~ iq !, (26)

N~r, z! 5 2
8p

3ko
3 d ~r! 1

1

q2 S 1

q
2 iD exp~ iq !

1
z2

q3 S 1 1
3i

q
2

3

q2D exp~ iq !. (27)

We recognize M0(r, z) as the scalar Green’s function:

M0~r, z! 5 g~r, v!/ko , (28)

and from Eqs. (25) and (26) we note that M2(r, z) is re-
lated to M1(r, z) as
M2~r, z! 5 2
r

2uzu
M1~r, z!. (29)

Less obvious is the following relation for N(r, z):

N~r, z! 5 2
8p

3ko
3 d ~r!

1
1

3 FM0~r, z! 2
uzu

r
M1~r, z! 2 M2~r, z!G ,

(30)

and here M2(r, z) can be eliminated in favor of M1(r, z)
with Eq. (29). The appearance of the delta function in
N(r, z) came from simply comparing the two representa-
tions of gJ(r, v). We shall show in Section 7 that the in-
tegral representation (17) for N(r, z) does indeed prop-
erly represent the self-field contribution to the angular
spectrum.

6. EVANESCENT PART OF M2(r, z)
From Eqs. (29) and (30), it follows that all four integrals
can be expressed in terms of M0(r, z) and M1(r, z) only.
Since we are interested in the traveling and evanescent
contributions to these integrals, the question arises
whether these separate parts are also related in a simple
way. In this section we show how Eq. (29) has to be
modified if we consider the evanescent part only. The
evanescent parts of M1(r, z) and M2(r, z) are defined by

M1~r, z!ev 5 2E
1

`

daa2J1~ar!exp~2uzuAa2 2 1 !,

(31)

M2~r, z!ev 5 2E
1

`

da
a3

~a2 2 1 !1/2 J2~ar!

3 exp~2uzuAa2 2 1 !. (32)

To relate both integrals, we integrate M2(r, z)ev by parts,
which gives

M2~r, z!ev 5 2
1

uzu
J2~r! 2

1

uzu E1

`

da exp~2uzuAa2 2 1 !

3
d

da
@a2J2~ar!#. (33)

The recursion relation for the Bessel functions
(d/dx)@x2J2(x)# 5 x2J1(x) then allows us to express the
remaining integral in terms of M1(r, z)ev:

M2~r, z!ev 5 2
1

uzu
J2~r! 2

r

2uzu
M1~r, z!ev. (34)

We note that, as compared with Eq. (29), an extra term,
2J2(r)/uzu, appears.

The above derivation can be repeated for the traveling
part, and in a similar way we then obtain

M2~r, z!tr 5
1

uzu
J2~r! 2

r

2uzu
M1~r, z!tr. (35)
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Here again the term J2(r)/uzu appears but with the oppo-
site sign. When we add Eq. (35) to Eq. (34), we recover
Eq. (29), as it should be. This shows that the traveling
and evanescent parts of M2(r, z) and M1(r, z) are still re-
lated in a simple way, but, owing to the splitting, the trav-
eling and evanescent parts acquire the additional term of
J2(r)/uzu, with the opposite sign.

7. EVANESCENT PART OF N(r, z)
In this section we shall show that Eq. (30) can also be bro-
ken up in an evanescent part and a traveling part. A
complication here is the delta function, which should be
properly represented by the integral representation of
N(r, z). To this end, we recall the spectral representa-
tion of d (r):

d ~r! 5
1

~2p!3 E d3k exp~ ik • r!. (36)

Then we use cylinder coordinates (k i , f̄, kz) in k space
and integrate over kz and then over f̄, just as in Section
4. This yields the formal representation

d ~r! 5
1

2p
d ~z !E

0

`

dk ik iJ0~k ir i!. (37)

Then we transform again to dimensionless variables, and
we keep the upper limit finite:

d ~r! 5
ko

3

2p
d ~z!E

0

A

daaJ0~ar!, A → `. (38)

With a recursion relation for the Bessel functions, this in-
tegral can be evaluated, resulting in the representation33

d ~r! 5
ko

3

2p
d ~z!

A

r
J1~Ar!, A → `. (39)

The evanescent part of N(r, z) is

N~r, z!ev 5 2E
1

`

daaAa2 2 1J0~ar!

3 exp~2uzuAa2 2 1 !. (40)

When we use the recursion relation xJ0(x)
5 (d/dx)@xJ1(x)#, keep the upper limit finite, say A, and
integrate by parts, then N(r, z)ev becomes

N~r, z!ev 5 2
A

r
J1~Ar!AA2 2 1 exp~2uzuAA2 2 1 !

1
1

r
E

1

A

daaJ1~ar!
d

da
FAa2 2 1

3 exp~2uzuAa2 2 1 !G ,
A → `. (41)

With the familiar representation of the one-dimensional
delta function

d ~z! 5
1
2 AA2 2 1 exp~2uzuAA2 2 1 !, A → `,

(42)
and Eq. (39), we see that the first term on the right-hand
side of Eq. (41) represents d (r), apart from a constant.
Then we work out the derivative d/da and use Eq. (31),
which yields

N~r, z!ev 5 2
4p

ko
3 d ~r! 2

uzu

2r
M1~r, z!ev

1
1

r
E

1

`

da
a2

~a2 2 1 !1/2 J1~ar!

3 exp~2uzuAa2 2 1 !. (43)

Comparison with Eq. (30) shows some similarity with
N(r, z), but the delta function does not have the correct
overall factor. Apparently, the remaining integral in Eq.
(43) must still have a hidden delta function.

Next, we eliminate J2(ar) with a recursion relation
from representation (32) for M2(r, z)ev, in favor of J0(ar)
and J1(ar). After some rearrangements, we then obtain

M2~r, z!ev 5 M0~r, z!ev 2 N~r, z!ev

2
2

r
E

1

`

da
a2

~a2 2 1 !1/2 J1~ar!

3 exp~2uzuAa2 2 1 !. (44)

Then we note that both Eqs. (43) and (44) contain the
same integral, and both involve N(r, z)ev. We eliminate
the integral in favor of N(r, z)ev, which then finally gives

N~r, z!ev 5 2
8p

3ko
3 d ~r! 1

1

3 FM0~r, z!ev

2
uzu

r
M1~r, z!ev 2 M2~r, z!evG . (45)

This result is identical in form as Eq. (30) for the unsplit
N(r, z). This shows explicitly that the integral repre-
sentation for N(r, z) does indeed represent the self-field
properly, and it also proves that this delta function con-
tribution is entirely included in the evanescent part.
Furthermore, no extra term appears because of the split-
ting, as was the case in the previous Section 6 with the
splitting of M2(r, z).

The computation of this section can be repeated for the
integral representing the traveling part of N(r, z). The
only difference is then that the integrated part in Eq. (41),
which provided the delta function, is now identically zero.
Therefore the result for the traveling part is

N~r, z!tr 5
1

3 FM0~r, z!tr 2
uzu

r
M1~r, z!tr 2 M2~r, z!trG ,

(46)
and, when added to Eq. (45), the result reproduces Eq.
(30), which was derived directly from the Green’s tensor.

8. ASYMPTOTIC EXPANSION OF THE
EVANESCENT PART
To obtain asymptotic expansions of the evanescent parts
of the auxiliary functions, we could first change variables
according to a2 5 1 1 u2 in the integral representations.
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Then each integral becomes of the Laplace type, as in Eq.
(20), and asymptotic expansions can be obtained by stan-
dard methods.34 There is, however, an interesting step
that can be made first, which facilitates the computation
considerably. In Section 4 it was shown that the trans-
formation a2 5 1 1 u2 removes the singularities from
the integrands. An alternative transformation follows
from the identity

E
1

`

da
an11

~a2 2 1 !1/2 Jn~ar!exp~2uzuAa2 2 1 !

5
1

uzu
Jn~r! 1

r

uzu E1

`

daanJn21~ar!

3 exp~2uzuAa2 2 1 !,

n 5 0, 1, 2, . . . , (47)

which can be derived from integration by parts and a re-
cursion relation for the Bessel functions. We note that
M0(r, z)ev, Eq. (18), and M2(r, z)ev, Eq. (32), are of this
type. For n 5 0 we have J21(ar) 5 2J1(ar), and this
becomes

M0~r, z!ev 5
1

uzu
J0~r! 2

r

uzu E1

`

daJ1~ar!

3 exp~2uzuAa2 2 1 !. (48)

Now we make the substitution a2 5 1 1 u2, which gives

M0~r, z!ev 5
1

uzu
J0~r! 2

r

uzu E0

`

du

3 exp~2uuzu!
u

~1 1 u2!1/2 J1~rA1 1 u2!.

(49)

If we then integrate by parts, the integrated part is zero.
Integrating twice yields

M0~r, z!ev 5
1

uzu
J0~r! 2

r

uzu3 J1~r!

2
r

uzu3 E
0

`

du exp~2uuzu!

3
d2

du2

u

~1 1 u2!1/2 J1~rA1 1 u2!,

(50)

as an exact result. It is now clear that in this fashion we
arrive at an asymptotic expansion with uzu as the large pa-
rameter and with the value of r fixed. The next inte-
grated part vanishes again, and therefore the next contri-
bution is O(uzu25). This gives

M0~r, z!ev 5
1

uzu
J0~r! 2

r

uzu3 J1~r! 1 O~ uzu25!, (51)

which is the asymptotic expansion of M0(r, z)ev.
The asymptotic expansion of M1(r, z)ev can be derived

in a similar way from Eq. (31) with the result
M1~r, z!ev 5
2

uzu2 J1~r! 1
6r

uzu4 J0~r! 1 O~ uzu26!. (52)

The remaining two integrals can be handled in the same
way, but with Eqs. (34) and (45) we find immediately

M2~r, z!ev 5 2
1

uzu
J2~r! 2

r

uzu3 J1~r! 1 O~ uzu25!, (53)

N~r, z!ev 5 2
2

uzu3 J0~r! 1 O~ uzu25!. (54)

The asymptotic expansion of the auxiliary functions can
be substituted into Eq. (13) to obtain the expansion of the
evanescent part of the Green’s tensor gJ(r, v)ev. Figure 1
illustrates the accuracy of the asymptotic approximation
for the case of M0(r, z)ev with r 5 5. Shown is the exact
result, the first approximation, and the approximation up
to O(uzu23). The exact result was obtained by numerical
integration. At this point it should be noted that for nu-
merical purposes the transformation to Eq. (20) is useful.
Although the singularity (a2 2 1)21/2 is integrable, it is
not attractive from a numerical point of view. Figure 1
shows that the approximation sets in at approximately
one wavelength distance (z 5 2p) from the xy plane. We
have verified numerically that the approximations of Eqs.
(52)–(54) are equally accurate.

When the field point is on the z axis, we have r 5 0,
and the integrals in Eqs. (18), (31), (32), and (40) can be
evaluated explicitly. We find

M0~0, z!ev 5
1

uzu
, (55)

M1~0, z!ev 5 M2~0, z!ev 5 0, (56)

N~0, z!ev 5 2
2

uzu3 , (57)

for z Þ 0. However, when we set r 5 0 in the asymptotic
expansion [Eqs. (51)–(54)], we obtain precisely the same
result, provided that we set O(uzu25) and O(uzu26) equal to
zero. Therefore the asymptotic expansion with the terms
shown explicitly in Eqs. (51)–(54) is exact on the z axis for

Fig. 1. Evanescent part of the auxiliary function M0(r, z)
(curve a), as a function of uzu for r 5 5. Curve b is the asymptotic
approximation J0(r)/uzu, and curve c is the asymptotic approxi-
mation with both terms from Eq. (51). The exact value remains
finite for uzu → 0, but the approximations diverge near the xy
plane.
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all z, z Þ 0. The evanescent part of the Green’s tensor
for a point on the z axis (z Þ 0) is then found to be

gJ~r, v!ev 5
1

2uzu
~ IJ 1 ezez! 2

1

uzu3 ~ IJ 2 3ezez!, (58)

in agreement with Ref. 17.
Furthermore, if the normal distance between the field

point and the z axis is less than approximately a fraction
of a wavelength, we have J0(r) ' 1 and Jn(r) ' 0,
n 5 1, 2 , . . . , and we find to leading order in uzu

gJ~r, v!ev '
1

2uzu
~ IJ 1 ezez!. (59)

In this cylindrical region around the z axis we have
uzu ' q, and therefore near the z axis the evanescent
waves survive as O(q21) in the far field. This result gen-
eralizes conclusions by others17,18,23 that the evanescent
waves reach the far field as O(q21) on the z axis. It was
shown recently35 for the case of the scalar wave that the
evanescent waves do reach the far field in a ‘‘forward
needle’’ of finite width, in agreement with our results.

It is more common to consider the asymptotic approxi-
mation as a function of the radial distance q 5 kor to
the source, for a fixed polar angle u. We then have
r 5 q sin u and z 5 q cos u. For u 5 0 or u 5 p, this
gives r 5 0, q 5 uzu, and the approximation of the
Green’s tensor for the evanescent part is given by approxi-
mation (59). We shall now assume u Þ 0, p. Then when
q becomes large, r also becomes large, and we can use the
asymptotic approximation of the Bessel functions:

Jn~r! ' S 2

pr
D 1/2

cosS r 2
1

2
np 2

1

4
p D . (60)

Seen as a function of q, all Bessel functions are O(q21/2),
and both r and z are O(q). To lowest order in 1/q, the
first term of M0(r, z)ev, Eq. (51), and the first term of
M2(r, z)ev, Eq. (53), contribute. With J2(r) ' 2J0(r)
we have M2(r, z)ev ' M0(r, z)ev, and we obtain for the
evanescent part of the Green’s tensor:

gJ~r, v!ev '
1

q3/2 ~ IJ 2 r̂ir̂i!
1

ucos uu S 2

p sin u
D 1/2

3 cosS p

4
2 q sin u D , (61)

for r 5 q sin u sufficiently large. This shows the typical
O(q23/2) behavior for field points far away from the z axis.
Approximation (61) is in agreement with Ref. 18, al-
though it should be noted that there the dyadic term r̂ir̂i

is missing. It is interesting to note that near the z axis,
approximation (59), and far away from the z axis, approxi-
mation (61), the dyadic parts are also different. Finally,
near the xy plane approximation (61) is obviously invalid,
since it was derived from the expansion for uzu large.

9. ANALYTIC SOLUTION
It appears possible to evaluate the integrals for the eva-
nescent parts of the auxiliary functions in closed form.
The integral in Eq. (18) can be found from a tabulated
integral,36 and this expression has been used to study dif-
fraction problems involving the scalar Green’s
function.37,38 The result is

M0~r, z!ev 5
1

q
@2U0~q 2 uzu, r! 2 J0~r!#, (62)

in terms of a Lommel function U0 . These functions of
two variables are defined by39,40

U,~a, b ! 5 (
m50

`

~21 !mS a

b D ,12m

J,12m~b !, (63)

for , integer and b . a . 0. We shall need these func-
tions for , 5 0, 1, a 5 q 2 uzu, and b 5 r. With the re-
lations between r, z, and q, we then find that a/b
5 tan(u/2) for 0 < u < p/2 and a/b 5 cot(u/2) for p/2
< u < p, showing that the Lommel functions are basi-

cally functions of u and r.
From Eqs. (18) and (31) we derive that M1(r, z)ev can

be found from M0(r, z)ev by differentiation:

M1~r, z!ev 5 2 sgn~z!
]2

]r]z
M0~r, z!ev. (64)

Apparently, we need derivatives of the Lommel functions
U,(a, b) with respect to r and z. With the known deriva-
tives with respect to a and b39, these derivatives are
found to be

]U,

]r
5

r

q F1

2 S a

b D ,21

J,21 2 U,11G , (65)

]U,

]z
5 2

z

q
U,11 2

a

2q
sgn~z!S a

b D ,21

J,21 . (66)

Here and in the remainder of this section we suppress the
arguments of the Bessel functions (r) and the Lommel
functions (a, b). Furthermore, the Lommel functions
obey the recursion relation

U, 1 U,12 5 S a

b D ,

J, , (67)

which allows us to express all Lommel functions in terms
of U0 and U1 only. Similarly, in this section we shall ex-
press all Bessel functions in terms of J0 and J1 . We
then obtain the result for M1(r, z)ev:

M1~r, z!ev 5
2

q2 H rJ0 1
ruzu

q
~J0 2 2U0!S 1 2

3

q2D
1

1

q2 @6ruzuU1 1 ~z2 2 2r2!J1#J . (68)

From Eqs. (18) and (32) we derive

M2~r, z!ev 5 S 1

r
2

]

]r
D ]

]r
M0~r, z!ev, (69)

and therefore we can obtain also M2(r, z)ev by differentia-
tion. Alternatively, we can use Eq. (34), which yields im-
mediately
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M2~r, z!ev 5
1

q2 F uzuJ0 2 uzuJ1S 2

r
1

3r

q2 D
2

6r2

q2 U1 2
r2

q
~J0 2 2U0!S 1 2

3

q2D G ,

(70)

and we have verified that both approaches give the same
result. Finally, from Eq. (45) we find the evanescent part
of N(r, z) to be

N~r, z!ev 5 2
8p

3ko
3 d ~r! 1

1

q3 F22z2U0 2 uzu~q 1 uzu!J0

1
3ruzu

q
J1 1 ~2qU1 1 2U0 2 J0!

3 S 1 2
3z2

q2 D G . (71)

We have verified the expressions above by comparing
them with results obtained with numerical integration.

Since the evanescent parts are pure real, it follows
from Eq. (19) that the imaginary part of the Green’s ten-
sor resides entirely in the traveling part. We therefore
have

Im@gJ~r, v!tr# 5 Im@gJ~r, v!#, (72)

and the right-hand side can be found by taking the imagi-
nary part of the right-hand side of Eq. (22). For the cor-
responding auxiliary functions we then find

Im@M0~r, z!tr# 5
sin q

q
, (73)

Im@M1~r, z!tr# 5 2
2ruzu

q3 F3 cos q

q
1 S 1 2

3

q2D sin qG ,

(74)

Im@M2~r, z!tr# 5
r2

q3 F3 cos q

q
1 S 1 2

3

q2D sin qG ,

(75)

Im@N~r, z!tr# 5
z2

q3 sin q 1
1

q2 S 1 2
3z2

q2 D
3 S sin q

q
2 cos q D . (76)

Since only the real part of gJ(r, v) splits into traveling
and evanescent, the real part of the traveling part follows
from

Re@gJ~r, v!tr# 5 Re@gJ~r, v!# 2 gJ~r, v!ev, (77)

and the auxiliary functions follow accordingly. The real
part of gJ(r, v) can be found from Eqs. (24)–(27), and for
the evanescent part we use Eqs. (62), (68), (70), and (71).

For a field point on the z axis we have U0 5 1 and U1
5 0, and it follows that the solutions above reduce to
Eqs. (55)–(57). The corresponding traveling parts are
M0~0, z!tr 5 2
1

uzu
@1 2 exp~ iuzu!#, (78)

M1~0, z!tr 5 M2~0, z!tr 5 0, (79)

N~0, z!tr 5
2

uzu3 @1 2 exp~ iuzu!#

1 S 1 1
2i

uzu D exp~ iuzu!

uzu
. (80)

It is particularly interesting to consider the limit uzu
→ 0 along the z axis, for which we find

M0~0, 0 !tr 5 i, (81)

N~0, 0 !tr 5 i/3. (82)

The corresponding Green’s tensor is

gJ~0 !tr 5
2i

3
IJ , (83)

showing that the traveling part remains finite at the ori-
gin, and therefore all singular behavior is accounted for
by evanescent waves. Equation (83) agrees with Ref. 17.
Figure 2 illustrates a typical splitting into three parts
(evanescent, traveling real, and traveling imaginary),
shown as a function of q. We see from the graph that in-
deed M0(0, 0)tr 5 i.

10. SOLUTION IN THE XY PLANE
As was mentioned in Section 4, the integrals representing
M1(r, z), M2(r, z), and N(r, z) diverge for z 5 0. Nev-
ertheless, they represent the functions given by Eqs.
(25)–(27), which do exist for z 5 0, and are finite (let r
Þ 0 in this section). The problem obviously lies in the

evanescent part, but with the results from Section 9 we
can now consider the limit uzu → 0. The first argument of
the Lommel functions becomes q 2 uzu → r, so we can
use the known special cases35

U0~r, r! 5
1
2 @J0~r! 1 cos r#, (84)

Fig. 2. Illustration of the splitting of the function M0(r, z) into
its evanescent part (curve a) and traveling part. The real and
imaginary parts of the traveling part are shown as curves b and
c, respectively. The value of the traveling part at the origin is
equal to i, whereas the evanescent part diverges.



H. F. Arnoldus and J. T. Foley Vol. 19, No. 8 /August 2002 /J. Opt. Soc. Am. A 1709
U1~r, r! 5
1
2 sin r. (85)

We then obtain from Section 9 the limiting values for the
evanescent parts:

M0~r, 0!ev 5
cos r

r
, (86)

M1~r, 0!ev 5 2
2

r
J2~r!, (87)

M2~r, 0!ev 5
cos r

r
2

3

r2 S sin r 1
cos r

r
D , (88)

N~r, 0!ev 5
1

r2 S sin r 1
cos r

r
D . (89)

We find that all functions exist for uzu → 0, and therefore
the fact that the integrals do not formally exist for z
5 0 should be considered a mathematical artifact. The
exception here is, of course, the representation of
N(r, 0)ev, since this divergence partially represents the
self-field. However, if we split off this self-field, as in Eq.
(45), then the remaining part is finite for uzu → 0 and
given by Eq. (89).

The imaginary parts of the traveling parts in the xy
plane follow from Eqs. (73)–(76), with z 5 0 and q 5 r.
The real parts of the traveling parts can be found by tak-
ing the real parts of Eqs. (24)–(27) and subtracting the
evanescent parts, given above. We then find

Re@M0~r, 0!tr# 5 Re@M2~r, 0!tr# 5 Re@N~r, 0!tr# 5 0,

(90)

Re@M1~r, 0!tr# 5
2

r
J2~r!. (91)

In the xy plane, the real part of the Green’s tensor con-
sists entirely of evanescent waves, except for the M1 com-
ponent. Since we also have Re@M1(r, 0)# 5 0, we reach
the peculiar conclusion that a component that is identi-
cally zero splits into two equal and opposite parts, given
by Eqs. (87) and (91). This situation is reminiscent of the
appearance of the terms 6J2(r)/uzu in the splitting of
M2(r, z) in Section 6.

With the solution given above, it is easy to verify that
in the limit r → 0 the traveling part reduces again to Eq.
(83), as it should. For r large, the dominant contribution
is O(r21), and we have

M0~r, 0! 5
exp~ir!

r
' M2~r, 0!, (92)

with all other functions of higher order. The real parts,
(cos r)/r, are entirely evanescent, whereas the imaginary
parts, (sin r)/r, are entirely traveling. The corresponding
Green’s tensor is

gJ~r, v!z50 ' ~ IJ 2 r̂ir̂i!
exp~ir!

r
, r large. (93)
11. TRAVELING WAVES
So far we have mainly focused on the properties of the
evanescent waves by means of the angular spectrum ex-
pansion. In this section we shall show that the traveling
waves have their origin directly in the field itself and can
be obtained without reference to the angular spectrum.
To this end, we note that the integrals in Eqs. (14)–(16)
have the form

Mn~r, z! 5 E
0

`

daa$. . .%Jn~ar!, (94)

with $. . .% a function of a and z but not of r. The corre-
sponding traveling part is then

Mn~r, z!tr 5 E
0

1

daa$. . .%Jn~ar!. (95)

We note that Eq. (94) has the form of a Fourier–Bessel
transform, which can be inverted according to41

$. . .% 5 E
0

`

dr8r8Mn~r8, z!Jn~ar8!. (96)

Then we substitute this expression into the right-hand
side of Eq. (95) and rearrange the terms. Then the trav-
eling part can be written as

Mn~r, z!tr 5 E
0

`

dr8Fn~r, r8!Mn~r8, z!, n 5 0, 1, 2,

(97)

with Fn(r, r8) universal functions, defined by

Fn~r, r8! 5 r8E
0

1

daaJn~ar!Jn~ar8!, n 5 0, 1 ,. . . .

(98)

Equation (97) shows that the traveling part of Mn(r, z)
can be obtained directly from Mn(r, z) by means of a
filter-type operation with a field-independent filter func-
tion Fn(r, r8).

The integral in Eq. (98) can be evaluated by quadra-
ture, and the result is

Fn~r, r8! 5
r8

r2 2 ~r8!2 @rJn~r8!Jn11~r!

2 r8Jn~r!Jn11~r8!#. (99)

For r8 5 r we take the limit r8 → r, which yields

Fn~r, r! 5
1

2
rH @Jn~r!8#2 1 S 1 2

n2

r2 DJn~r!2J , (100)

with Jn(r)8 the derivative of Jn(r). Figure 3 shows the
behavior of F1(r, r8) as a function of r8 for a fixed r. It
appears that Fn(r, r8) has a strong maximum at r8 ' r
for r sufficiently large. Indeed, if we use the asymptotic
form Eq. (60) of the Bessel functions and take r8 ' r,
then Eq. (99) reduces to

Fn~r, r8! '
1

p

sin~r 2 r8!

r 2 r8
, (101)
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e.g., a sinc function around r8 5 r. This illustrates that
the traveling part of the field, as determined by Eq. (97),
acquires its dominant contribution from the field in the
neighborhood of the field point (r, z).

As shown in Section 9, only the real part of the auxil-
iary functions is affected by the splitting into a traveling
and an evanescent part. The imaginary part ends up en-
tirely in the traveling part, as indicated by Eq. (72).
Since the filter functions are real, the imaginary part of
Eq. (97) becomes

Im@Mn~r, z!# 5 E
0

`

dr8Fn~r, r8!Im@Mn~r8, z!#.

(102)

This exhibits the remarkable feature that the functions
Im@Mn(r, z)#, given by Eqs. (73)–(75), pass through the fil-
ter Fn(r, r8) undistorted.

12. CONCLUSIONS
We have studied the traveling and evanescent parts of the
electromagnetic Green’s tensor gJ(r, v) 5 kogJ(r, v). We
have shown that the Green’s tensor can be split with the
help of four auxiliary functions on the basis of an angular
spectrum representation. The self-field was shown to be
properly represented as a part of the function N(r, z)ev

and could be separated from it, as shown in Eq. (45). We
have derived an asymptotic expansion for the evanescent
part of the Green’s tensor as a function of uzu and have also
obtained a closed-form solution for the evanescent part in
terms of the Lommel functions. This analytic solution
appeared to be particularly useful for the study of the
Green’s tensor in the neighborhood of the xy plane, where
the asymptotic expansion is invalid. As for the traveling
waves, we have shown in Section 11 that the traveling
part of the Green’s tensor can be found without direct ref-
erence to its angular spectrum representation. Each
auxiliary function can be filtered with a filter function
Fn(r, r8), which then immediately yields the traveling
component of that function.

Fig. 3. This graph shows the filter function F1(r, r8) as a func-
tion of r8, for r 5 100. The pronounced peak is located near
r8 5 100, and the peak height is approximately 1/p, as indicated
by Eq. (101).
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