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The electromagnetic field, generated by a source, has four typical components: the far field, the middle field,
the near field, and the self-field. This decomposition is studied with the help of the dyadic Green’s function for
the electric field and its representation in reciprocal (k) space. The representations in k space involve three
universal functions, which we call the T(q) functions. Various representations of these functions are pre-
sented, and an interesting sum rule is derived. It is shown that the magnetic field can be split in a similar
way, leading to a middle field and a far field only. © 2001 Optical Society of America
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1. INTRODUCTION
Maxwell’s equations govern the generation of electromag-
netic radiation by charges and currents. In conventional
approaches one derives a formal solution, such as a mul-
tipole expansion or an integral representation, and then
develops an asymptotic expansion for the field far away
from the source. For microscopic sources this far field
used to be the only part of the radiation amenable to ex-
perimental observation. With recent progress in nano-
scale technology and light detection with microscopic op-
tical fiber tips, also the field close to the source can be
measured in detail.1–3 Electric fields can be observed up
to within approximately a wavelength of resolution in the
vicinity of a source. This so-called near-field optics has
attracted great experimental attention, but it appears
that little progress has been made in the theoretical in-
vestigations of these near fields. This seems partially be-
cause the response of the fiber tip, e.g., the detector, has
to be taken into account as well. This leads to compli-
cated geometries, and such configurations have been
studied mainly numerically. Here the first step of a dif-
ferent approach to the evaluation of optical near fields is
presented, based on a representation of these fields in re-
ciprocal space.

2. INTEGRAL SOLUTION OF MAXWELL’S
EQUATIONS
The time dependence of the electric field E(r, t) can be
Fourier transformed according to

Ê~r, v! 5 E
2`

`

dtE~r, t !exp~ivt !. (2.1)

Since E(r, t) is real we have Ê(r, 2v) 5 Ê(r, v)* , and
therefore we need to consider only v.0. The inverse of
Eq. (2.1) then becomes
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E~r, t ! 5
1

p
Re E

0

`

dvÊ~r, v!exp~2ivt !. (2.2)

The magnetic field B(r, t), the charge density r(r, t), and
the current density j(r, t) transform similarly. From
here on we shall suppress the v dependence and simply
write Ê(r), etc.

In the frequency domain, Maxwell’s equations are

¹ • Ê 5 r̂/e0 , (2.3)

¹ 3 Ê 5 ivB̂, (2.4)

¹ • B̂ 5 0, (2.5)

¹ 3 B̂ 5 2
iv

c2 Ê 1 m0 ĵ. (2.6)

The charge and current densities are related by the con-
tinuity equation ¹ • ĵ 5 ivr̂. It can then be verified by
substitution that a solution is given by

Ê~r! 5
ivm0

4p
E d3r8g~r 2 r8! ĵ~r8!

1
ivm0

4pk0
2 ¹F¹ • E d3r8g~r 2 r8! ĵ~r8!G ,

(2.7)

B̂~r! 5
m0

4p
¹ 3 E d3r8g~r 2 r8! ĵ~r8!, (2.8)

where g(r) is the scalar Green’s function, defined by

g~r! 5 exp~ik0r !/r, (2.9)

and k0 5 v/c. We shall also suppress the v dependence
of Green’s functions in the notation. In order to verify
this solution, we need only the identity
2001 Optical Society of America
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~¹2 1 k0
2!E d3r8g~r 2 r8! ĵ~r8! 5 24p ĵ~r!. (2.10)

The Green’s function g(r) is not defined for r 5 0, and in
the integrals above, it is understood that a small sphere
with radius d around the point r is excluded from the in-
tegration range. In the end we then take the limit
d → 0. As a consequence, care should be exercised in dif-
ferentiating such integrals, as in Eqs. (2.7), (2.8), and
(2.10). Operation of ¹ on these integrals not only affects
the r dependence of the Green’s function in the integrand,
it also moves the sphere. This might lead to an extra
term when moving the differential operators under the in-
tegral sign.4,5 It can be shown that for the integral in Eq.
(2.7) we get

¹F¹ • E d3r8g~r 2 r8! ĵ~r8!G
5 2

4p

3
ĵ~r! 1 E d3r8¹$¹ • @ g~r 2 r8! ĵ~r8!#%. (2.11)

Here, the first term on the right-hand side is due to mov-
ing the sphere. In Eq. (2.8) the curl can be moved under
the integral sign without any additional term appearing.
In Eq. (2.10) the right-hand side of the equation is due to
moving the sphere when ¹2 acts on the integral, as can be
seen from (¹2 1 k0

2)@ g(r 2 r8) ĵ(r8)# 5 0 for r Þ r8, e.g.,
everywhere on the integration region.

3. DYADIC GREEN’S FUNCTION
It is advantageous to rewrite the solution from the previ-
ous section and bring it in dyadic form. To this end, we
notice the identity

¹$¹ • @ g~r 2 r8! ĵ~r8!#% 5 @¹¹g~r 2 r8!# • ĵ~r8!, (3.1)

where ¹¹g(r 2 r8) is a dyadic operator. Both integrals
in Eq. (2.7) can then be combined, and the solution takes
the form

Ê~r! 5 2
i

3e0v
ĵ~r! 1

ivm0

4p
E d3 r8dJ~r 2 r8! • ĵ~r8!.

(3.2)

Here, dJ(r) is defined as

dJ~r! 5 S IJ 1
1

k0
2 ¹¹ D g~r!, (3.3)

and IJ stands for the unit dyad. For later reference, dJ(r)
is given explicitly by

dJ~r! 5 S 1 1
i

k0r
2

1

k0
2r2D IJg~r!

1 S 21 2
3i

k0r
1

3

k0
2r2D r̂r̂g~r!, (3.4)

with r̂ the unit vector into the r direction. Solution (3.2)
is often used as the starting point in near-field or nano-
scale calculations.6,7 The first term on the right-hand
side of Eq. (3.2), owing to moving the sphere, is called the
self-field since it produces an electric field that is directly
proportional to the current density at the same location.
In classical texts, this term is often omitted8 since it
yields no contribution to the field outside the source re-
gion, and in particular it has no effect on the far field.
From a mathematical point of view, without this self-field
contribution, the Ê field would not rigorously satisfy Max-
well’s equations.9 As we shall see below, this self-field
contributes in an essential way to the representation of
the Green’s function in reciprocal space. Also, when the
transverse and longitudinal components of the near field
are considered separately, this self-field yields a nonvan-
ishing contribution outside the source and consequently
can not be neglected.10

Solution (3.2) can be written in a more compact way by
introducing the following dyadic operator:

gJ~r! 5 2
4p

3k0
2 d ~r! IJ 1 dJ~r!. (3.5)

Then Eq. (3.2) can be written as

Ê~r! 5
ivm0

4p
E d3r8gJ~r 2 r8! • ĵ~r8!. (3.6)

Here it is understood that the integral over the delta
function is performed in the usual way, whereas for the
integration over the singularity of dJ(r 2 r8) at r8 5 r we
leave out the small sphere. The dyadic operator gJ(r) is
referred to as the dyadic Green’s function.

We can eliminate the magnetic field from Maxwell’s
equations, which gives

k0
2Ê 2 ¹ 3 ~¹ 3 Ê! 5 2ivm0 ĵ (3.7)

For the electric field. It follows by inspection, and with
the help of Eq. (2.10), that expression (2.7) for Ê(r) satis-
fies Eq. (3.7). If we then formally let gJ(r) be the solution
of

k0
2gJ~r! 2 ¹ 3 @¹ 3 gJ~r!# 5 24pd ~r! IJ, (3.8)

which can be checked with Eq. (3.3) for r Þ 0, then solu-
tion (3.6) for Ê(r) follows by superposition. This justifies
Eq. (3.8) for the dyadic Green’s function.

4. RECIPROCAL SPACE
An extremely useful representation of the fields and the
Green’s functions arises if one Fourier transforms with
respect to the spatial dependence. This representation
in reciprocal space, which we shall indicate as k space,
has widespread applications. For instance, it leads to
(although it is not identical to) the angular-spectrum rep-
resentation of the radiation field,11 which can be applied
to obtain the asymptotic form of the field in the radiation
zone (the far field).12 Another example is the quantiza-
tion of the electromagnetic field in Coulomb gauge, which
proceeds through a transformation to reciprocal
space.13,14 The transform F(k) of an arbitrary function
f(r) is defined as

F~k! 5 E d3rf~r!exp~2ik • r!, (4.1)

with inverse
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f~r! 5
1

~2p!3 E d3k F~k!exp~ik • r!. (4.2)

We indicate such a transform pair as f(r) ↔ F(k).
The transform of the scalar Green’s function g(r) is de-

noted by G(k), and with Eq. (4.1) this is

G~k! 5 E d3r exp~2ik • r!
exp~ik0r !

r
. (4.3)

In order to evaluate this integral we use spherical coordi-
nates and take the polar axis along vector k. Integration
over the angles u and f then yields

G~k! 5
2pi

k
E

0

`

dr$exp@i~k0 2 k !r# 2 exp@i~k0 1 k !r#%,

(4.4)

and this integral does not exist in the upper limit. In or-
der to remedy this problem, we add a small positive
imaginary part to k0 , after which we obtain

G~k! 5
4p

k2 2 k0
2 2 ie

, (4.5)

with e↓0. It should then be verified that this construc-
tion with e indeed gives the correct Green’s function,
when transformed back with Eq. (4.2). To this end, we
take spherical coordinates in k space, such that the polar
axis is along vector r. After integrating over the angles
we find

g~r! 5 2
i

pr
E

0

`

dk
k

k2 2 k0
2 2 ie

@exp~ikr ! 2 exp~2ikr !#.

(4.6)

This can be rewritten as

g~r! 5 2
i

pr
E

2`

`

dk
k

k2 2 k0
2 2 ie

exp~ikr !. (4.7)

Because of the e, the poles in the complex k plane at k
5 k0 and k 5 2k0 have just moved off the real axis.
With contour integration and the residue theorem we
then obtain g(r) 5 exp(ik0r)/r. This shows that the con-
struction with e indeed yields the correct retarded Green’s
function.

In order to find the k space representation of the dyadic
Green’s function, we start from Eq. (2.7). Let
Ê(r) ↔ Ê (k) and ĵ(r) ↔ Ĵ(k). With ¹ ↔ ik and the
convolution theorem, Eq. (2.7) transforms into

Ê~k! 5
ivm0

4p H Ĵ~k! 2
1

k0
2 k@k • Ĵ~k!#J G~k!, (4.8)

and this can be written as

Ê~k! 5
ivm0

4p
GJ ~k! • Ĵ~k!, (4.9)

provided we set

GJ ~k! 5 G~k!S IJ 2
1

k0
2 kkD . (4.10)
This is the k space representation of the dyadic Green’s
function, since Eq. (4.9) is just the spatial transform of so-
lution (3.6).

5. SPLITTING OF THE FIELD
The Green’s function gJ(r) splits naturally into four dis-
tinctive parts, regarding the r dependence. The first
term in Eq. (3.5) is a delta function, and we call this the
self-field (SF) part of gJ(r). Then dJ(r) in Eq. (3.4) has a
1/r3 part, a 1/r2 part, and a 1/r part, and these terms are
indicated as the near-field (NF), middle-field (MF) and
far-field (FF) components of the Green’s function. So we
have

gJ~r!SF 5 2
4p

3k0
2 d ~r! IJ, (5.1)

gJ~r!NF 5 2
1

k0
2r3 ~ IJ 2 3 r̂r̂!exp~ik0r !, (5.2)

gJ~r!MF 5
i

k0r2 ~ IJ 2 3 r̂r̂!exp~ik0r !, (5.3)

gJ~r!FF 5
1

r
~ IJ 2 r̂r̂!exp~ik0r !, (5.4)

and gJ(r) is the sum of these four components. Then the
field from Eq. (3.6) splits accordingly:

Ê~r! 5 (
a

Ê~r!aF , (5.5)

with a 5 S, N, M, and F. Each field component is then
given by

Ê~r!aF 5
ivm0

4p
E d3r8gJ~r 2 r8!aF • ĵ~r8!,

a 5 S, N, M, or F, (5.6)

each of which has its typical r dependence. It should be
noted that, for instance, the r dependence of the near field
is not exactly 1/r3 because of the convolution with the
source ĵ(r8). Only for a point source in r 5 0 will the r
dependence be exactly 1/r3.

6. SPLITTING IN RECIPROCAL SPACE
We now seek the representations of the field components
in k space. To this end we need to transform the Green’s
functions:

gJ~r!aF ↔ GJ ~k!aF , a 5 S, N, M, or F, (6.1)

after which the field components are

Ê~k!aF 5
ivm0

4p
GJ ~k!aF • Ĵ~k!, a 5 S, N, M, or F.

(6.2)

The simplest one to transform is the self-field since
d (r) ↔ 1. We immediately obtain from Eq. (5.1)



550 J. Opt. Soc. Am. B/Vol. 18, No. 4 /April 2001 Arnoldus
GJ ~k!SF 5 2
4p

3k0
2 IJ , (6.3)

which is independent of k.
For the near field we need to transform gJ(r)NF from Eq.

(5.2). This requires the evaluation of the integral

GJ ~k!NF 5 2
1

k0
2 E d3r exp~2ik • r!

exp~ik0r !

r3 ~ IJ 2 3 r̂r̂!.

(6.4)

We take again spherical coordinates in r space and inte-
grate over the angles first. This gives

GJ ~k!NF 5 2
4p

k0
2k

~ IJ 2 3k̂k̂!E
0

`

dr
exp~ik0r !

r3

3 F3
k

cos~kr ! 1 S r 2
3

k2r D sin~kr !G , (6.5)

with k̂ the unit vector into the k direction. For r → 0 we
have sin(kr)/(kr) → 1, and it seems that the integrand di-
verges as 1/r3 for r → 0. However, if we make a Taylor
expansion of the integrand around r 5 0, it appears that
the integrand remains finite for r → 0 because of a pre-
cise cancellation of diverging terms. Therefore the inte-
gral exists in the lower limit. After making a change of
variables, the result can be written as

GJ ~k!NF 5
4p

k0
2 ~ IJ 2 3k̂k̂!T~k0 /k !NF , (6.6)

where we introduced the universal function

T~q !NF 5 2E
0

` dt

t3 F3 cos t 1 S t 2
3

t D sin tGexp~iqt !,

(6.7)

needed for q > 0.
The Green’s functions for the middle field and the far

field can be obtained along similar lines. We find

GJ ~k!MF 5
4p

k0
2 ~ IJ 2 3k̂k̂!T~k0 /k !MF , (6.8)

GJ ~k!FF 5 ~ IJ 2 k̂k̂!G~k! 1
4p

k0
2 ~ IJ 2 3k̂k̂!T~k0 /k !FF ,

(6.9)

with

T~q !MF 5 iqE
0

` dt

t2 F3 cos t 1 S t 2
3

t D sin tGexp~iqt !,

(6.10)

T~q !FF 5 q2E
0

` dt

t S cos t 2
sin t

t D exp~iqt !. (6.11)

7. EVALUATION OF THE T(q) INTEGRALS
The integrals representing the functions T(q)aF can be
evaluated analytically. Let’s start with T(q)NF , Eq.
(6.7). The first thing to notice is that the integral cannot
be split into three separate integrals, since these would
each diverge in the lower limit. It is only the combina-
tion of the three that exists. The method to be followed
here is to integrate by parts, and reduce the integral to a
standard integral. In order to do so one has to keep the
lower limit finite, say d, and then in the end take the limit
d → 0. Integration by parts two times yields the inter-
mediate result

T~q !NF 5
1

3
2 iqE

0

` dt

t3 ~t cos t 2 sin t !exp~iqt !, (7.1)

which we use in Appendix A, and two more times gives
the representation

T~q !NF 5
1

3
2

1

2
q2 2

iq

2
~q2 2 1 !E

0

` dt

t
exp~iqt !sin t.

(7.2)

This last integral is tabulated, and the final result for
T(q)NF becomes

T~q !NF 5
1

3
2

1

2
q2 1

1

4
q~q2 2 1 !lnU1 1 q

1 2 q
U

2
ip

4
H q~q2 2 1 !, 0 < q , 1

0, q . 1
. (7.3)

From the integral representations (6.7) and (6.10) we ob-
serve the relation

T~q !MF 5 2q
d

dq
T~q !NF , (7.4)

which gives immediately with Eq. (7.3),

T~q !MF 5
3

2
q2 2

1

4
q~3q2 2 1 !lnU1 1 q

1 2 q
U

1
ip

4
H q~3q2 2 1 !, 0 < q , 1

0, q . 1
.

(7.5)

Then we use representation (7.1) for T(q)NF in Eq. (7.4),
and this gives

T~q !MF 5 iqE
0

` dt

t3 ~t cos t 2 sin t !exp~iqt !

2 q2E
0

` dt

t2 ~t cos t 2 sin t !exp~iqt !. (7.6)

These integrals are the same as the ones appearing in
Eqs. (7.1) and (6.11). Therefore we find the simple rela-
tion

T~q !NF 1 T~q !MF 1 T~q !FF 5
1
3 , (7.7)

and from this
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T~q !FF 5 2q2 1
1

2
q3 lnU1 1 q

1 2 q
U

2
ip

4
H 2q3, 0 < q , 1

0, q . 1
. (7.8)

The functions T(q)aF are shown in Figs. 1–3. For q
5 0 we have T(0)FF 5 T(0)MF 5 0, but T(0)NF 5 1/3.
For large q we have T(`)MF 5 T(`)NF 5 0, and T(`)FF
5 1/3, as can be found by Taylor expansion in 1/q. For
q 5 1 the integrals have to be considered separately,

Fig. 1. Real and imaginary parts of the function T(q)FF .

Fig. 2. Real and imaginary parts of the function T(q)MF .

Fig. 3. Real and imaginary parts of the function T(q)NF .
since they can be discontinuous or diverging. We find
T(1)NF 5 21/6, T(1)MF 5 2` 1 ip/4, and T(1)FF 5 `
2 ip/4.

8. MORE ON THE T(q) FUNCTIONS
From Eqs. (6.6), (6.8), and (6.9) and the sum rule (7.7) we
find

GJ ~k!NF 1 GJ ~k!MF 1 GJ ~k!FF 5 ~ IJ 2 k̂k̂!G~k!

1
4p

3k0
2 ~ IJ 2 3k̂k̂!.

(8.1)

Adding the self-field from Eq. (6.3) gives

(
a

GJ ~k!aF 5 ~ IJ 2 k̂k̂!G~k! 2
4p

k0
2 k̂k̂, (8.2)

and when we combine the terms, using Eq. (4.5), the
right-hand side becomes GJ (k), as it should be. This
clearly shows that the self-field cannot be omitted in a k
space representation of the dyadic Green’s function.
Furthermore, for consistency we have to verify that when
we transform the GJ (k)aF’s back to r space with the in-
verse transform (4.2), we indeed recover the functions
gJ(r)aF . This is shown in Appendix A.

The T(q) functions can be represented in a more com-
pact form by considering q as a complex variable, al-
though restricted to the range 0 < q , `. They are

T~q !NF 5
1

3
2

1

2
q2 2

1

4
q~q2 2 1 !ln

q 2 1

q 1 1
, (8.3)

T~q !MF 5
3

2
q2 1

1

4
q~3q2 2 1 !ln

q 2 1

q 1 1
,

(8.4)

T~q !FF 5 2q2 2
1

2
q3 ln

q 2 1

q 1 1
. (8.5)

For ln(z) with z complex we take the cut in the complex
plane just below the negative real axis. For ln@(q
2 1)/(q 1 1)# this puts the cut in the q plane from q
5 21 to q 5 1, just below the real axis. For 0 < q
, 1 this gives the logarithm an imaginary part of ip.

Both the GJ (k)NF and the GJ (k)MF are proportional to
the corresponding T(q) functions, and both have the
same dyadic form. The GJ (k)FF , however, has an addi-
tional contribution. By inverse transform we find that
the part proportional to the T(q)FF transforms as (see Ap-
pendix A)

1

k0
2r3 ~ IJ 2 3 r̂r̂!@~1 2 ik0r !exp~ik0r ! 2 1#

↔ 4p

k0
2 ~ IJ 2 3k̂k̂!T~k0 /k !FF . (8.6)

Apparently, this part only contains terms that go as r23

and r22, whereas the total dyadic Green’s function for the
far field only has an r21 term. Another peculiarity is the
appearance of a nonretarded contribution (no exp(ik0r)).
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Evidently, the splitting of the right-hand side of Eq. (6.9)
into two distinct terms has no physical significance in r
space in the sense that it would split the far field into two
terms with the typical r21 behavior.

9. MAGNETIC FIELD
The solution for the magnetic field, Eq. (2.8), can be writ-
ten as

B̂~r! 5
m0

4p
E d3r8c~r 2 r8! 3 ĵ~r8!, (9.1)

with

c~r! 5 ¹g~r!. (9.2)

This vector field c(r) serves the same purpose for the
magnetic field as the dyadic Green’s function gJ(r) did for
the electric field. Since

c~r! 5 S ik0 2
1

r D r̂g~r!, (9.3)

we can immediately identify the field components, consid-
ering their r dependence. We see that the magnetic field
does not have either a self-field or a near field. The
middle and far fields are given by

B̂~r!aF 5
m0

4p
E d3r8c~r 2 r8!aF 3 ĵ~r8!, a 5 M, F,

(9.4)

with

c~r!MF 5 2
1

r
r̂g~r!, (9.5)

c~r!FF 5 ik0r̂g~r!. (9.6)

For the representation in reciprocal space, we let
c(r) ↔ C(k). With Eq. (9.2) we then have

C~k! 5 ikG~k! (9.7)

and G(k) given by Eq. (4.5). With B̂(r) ↔ B̂(k), we have
for the magnetic field in k space

B̂~k! 5
m0

4p
C~k! 3 Ĵ~k!, (9.8)

as follows from Eq. (9.1) and the convolution theorem.
Also in k space we can identify the middle- and far-field

components of the magnetic field. Following the same
procedure as in Section 6, we let

c~r!aF ↔ C~k!aF , a 5 M, F, (9.9)

so that the field components are

B̂~k!aF 5
m0

4p
C~k!aF 3 Ĵ~k!, a 5 M, F. (9.10)

It then remains to determine the functions C(k)aF , with

C~k!aF 5 E d3rc~r!aF exp~2ik • r!. (9.11)

Carrying out these integrations yields
C~k!MF 5 2
4p

k0
2 ikT~k0 /k !FF , (9.12)

C~k!FF 5 ikFG~k! 1
4p

k0
2 T~k0 /k !FFG . (9.13)

It is interesting to notice that for the splitting of the mag-
netic field we only need the T(q) function for the electric
far field. Also, it can be verified that the inverse trans-
forms yield the correct results in r space.

10. RELATIONS FOR ÊaF AND B̂aF

Maxwell’s equations (2.3)–(2.6) hold for the total fields,
but not for the components separately, in general. Nev-
ertheless, there are some interesting relations for the
various components. For instance, we see from Eqs.
(9.10), (9.12), and (9.13) that B̂(k)aF is proportional to k
3 Ĵ(k), and therefore we have k • B̂(k)aF . In r space
this is

¹ • B̂~r!aF 5 0, (10.1)

e.g., the middle and far fields both satisfy Eq. (2.5) sepa-
rately.

With Eqs. (6.2) and (6.9) we have

Ê~k!FF 5
ivm0

4p
G~k!$Ĵ~k! 2 k̂@k̂ • Ĵ~k!#%

1
ivm0

k0
2 T~k0 /k !FF$Ĵ~k! 2 3k̂@k̂ • Ĵ~k!#%,

(10.2)

and this gives

1

v
k 3 Ê~k!FF 5

im0

4p FG~k! 1
4p

k0
2 T~k0 /k !FFGk 3 Ĵ~k!.

(10.3)

With Eqs. (9.10) and (9.13) we see that this is exactly
B̂(k)FF . In r space we therefore have

¹ 3 Ê~r!FF 5 ivB̂~r!FF , (10.4)

showing that the far-field components satisfy Eq. (2.4).
For the middle field we have

1

v
k 3 Ê~k!MF 5

im0

k0
2 T~k0 /k !MFk 3 Ĵ~k!, (10.5)

but B̂(k)MF is with Eqs. (9.10) and (9.12),

B̂~k!MF 5 2
im0

k0
2 T~k0 /k !FFk 3 Ĵ~k!, (10.6)

and that is not the same as the right-hand side of (10.5).
Therefore the middle field does not satisfy Eq. (2.4).

Another example is the divergence of the electric field.
The representation in k space of ¹ • Ê(r)FF is with Eq.
(10.2):

ik • Ê~k!FF 5
2

e0v
@k • Ĵ~k!#T~k0 /k !FF . (10.7)
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If we indicate by R̂(k) the transform of r̂(r) and use the
continuity equation k • Ĵ 5 vR̂, then Eq. (10.5) becomes

ik • Ê~k!FF 5
2

e0
R̂~k!T~k0 /k !FF . (10.8)

This same relation also holds for the middle field and the
near field. For the self-field we obtain

ik • Ê~k!SF 5
1

3e0
R̂~k!, (10.9)

and with the sum rule (7.7) we then find for the diver-
gence of the total field

(
a

ik • Ê~k!aF 5
1

e0
R̂~k!, (10.10)

which is Eq. (2.3) in k space. This shows that each field
component has a nonzero divergence, and their sum adds
up to r̂/e0 . Another interesting observation is the follow-
ing. When r̂ represents a localized source, then r̂ 5 0
and ¹ • Ê(r) 5 0 outside the source region. The inverse
of Eq. (10.9) is

¹ • Ê~r!SF 5
1

3e0
r̂~r!, (10.11)

which also vanishes outside the source region. Therefore
the sum of the near field, middle field, and far field also
has a zero divergence outside the source. The three in-
dividual components, however, have a nonzero divergence
outside the source.

11. CONCLUSIONS
We have studied the dyadic Green’s function of electro-
magnetic theory from the point of view of its separation
into near-field, middle-field, and far-field components.
The representation of these various components in recip-
rocal space was obtained, and each component involves a
universal T(q) function. We have presented various in-
tegral representations of these functions, along with their
explicit forms in Eqs. (8.3)–(8.5). It was shown that in k
space it is essential to also account for the self-field
Green’s function; otherwise, the sum of the respective
Green’s functions would not combine into the total
Green’s function for the electric field. Then the magnetic
field was split similarly, both in r space and k space. It
turned out that for the magnetic field only the far-field
T(q) function enters the representation in reciprocal
space.

APPENDIX A
In this appendix we show that when we apply the inverse
transform (4.2) to the dyadic Green’s functions GJ (k)aF ,
we indeed recover the functions gJ(r)aF . Starting with
the far field, given by Eq. (6.9), we first consider the in-
verse of the term ( IJ 2 k̂k̂)G(k), with G(k) given by Eq.
(4.5). We use spherical coordinates in k space, with the
polar axis along the fixed vector r. When we integrate
over the angles, we obtain for the inverse of ( IJ

2 k̂k̂)G(k) the representation

1

2p
E

0

`

dk
k2

k2 2 k0
2 2 ie

3 K ~ IJ 1 r̂r̂!
1

ikr
@exp~ikr ! 2 exp~2ikr !#

1 ~ IJ 2 3 r̂r̂!H F 1

ikr
1

2

~ikr !3G @exp~ikr !

2 exp~2ikr !# 2
2

~ikr !2 @exp~ikr ! 1 exp~2ikr !#J L .

(A1)

Here the terms with exp(2ikr) can be taken into account
by extending the integration range to 2`. We then ob-
tain the representation

1

2p
E

0

`

dk
k2 exp~ikr !

k2 2 k0
2 2 ie K ~ IJ 1 r̂r̂!

1

ikr

1 ~ IJ 2 3 r̂r̂!F 1

ikr
2

2

~ikr !2 1
2

~ikr !3G L . (A2)

The integrand has three first-order poles, located at k
5 0 and k 5 6(k0

2 1 ie)1/2. In order to evaluate this in-
tegral over k, we close the contour with a semicircle in the
upper half of the complex k plane. Then the pole at k
5 (k0

2 1 ie)1/2 is within the contour, the pole at k
5 2(k0

2 1 ie)1/2 is outside the contour, and the pole at
k 5 0 is exactly on the contour. This last one should be
taken as a principal-value integral, so we first go around
this pole with a small semicircle in the upper half of the k
plane and evaluate the contour integral with the residue
theorem. From the result we then subtract the integral
over the small semicircle. The final result is

~ IJ 2 r̂r̂!
exp~ik0r !

r
2

1

k0
2r3 ~ IJ 2 3 r̂r̂!

3 @~1 2 ik0r !exp~ik0r ! 2 1# ↔ ~ IJ 2 k̂k̂!G~k!. (A3)

Next we consider the inverse of 4pk0
22( IJ

2 3k̂k̂)T(k0 /k)FF . When we integrate first over the
angles in k space, we obtain a result similar in structure
as Eq. (A1). The subsequent integration over k, however,
follows a different route. We set u 5 kr, which gives the
transform pair

2

pk0
2r3 ~ IJ 2 3 r̂r̂!I~k0r !FF ↔

4p

k0
2 ~ IJ 2 3k̂k̂!T~k0 /k !FF ,

(A4)

where we introduced the auxiliary function

I~b !FF 5 E
0

`

duT~b/u !FFF S u 2
3

u D sin u 1 3 cos uG .

(A5)
In order to evaluate this integral, we use the integral rep-
resentation (6.11) for the function T(q)FF . We make a
change of integration variables from t to v according to
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v 5 bt/u and then insert this into Eq. (A5). Then we
change the order of integration, and in the integral over u
we set p 5 v/b. This leads to the following representa-
tion for I(b)FF :

I~b !FF 5 b2E
0

` dv

v
exp~iv !E

0

` du

u2 F S u 2
3

u D sin u

1 3 cos uGF cos~ pu ! 2
1

pu
sin~ pu !G . (A6)

First we perform the integration over u, integrating by
parts several times and keeping the lower limit finite. In
the end we then let the lower limit approach zero. The
result is

E
0

` du

u2 F S u 2
3

u D sin u 1 3 cos uG
3 F cos~ pu ! 2

1

pu
sin~ pu !G

5 H 1

2
pp2, 0 < p , 1

0, p . 1

. (A7)

Then we set again p 5 v/b and substitute this into Eq.
(A6). Carrying out the v integration then yields

I~b !FF 5
p

2
@~1 2 ib !exp~ib ! 2 1#, (A8)

and with relation (A4) this then gives the relation shown
in Eq. (8.6). Finally, when we add Eq. (8.6) to relation
(A3), the left-hand side is the far-field Green’s function
from Eq. (5.4).

For the middle field we need to invert 4pk0
22( IJ

2 3k̂k̂)T(k0 /k)MF . This proceeds along the same lines
as in the previous paragraph, leading to relations (A4)
and (A5) with FF→MF. For T(q)MF we use the represen-
tation (6.10), and instead of Eq. (A6) we are now left with

I~b !MF 5 ib2E
0

` dv

v2 exp~iv !E
0

` du

u2 F S u 2
3

u D sin u

1 3 cos uG 3 F S pu 2
3

pu D sin~ pu !

1 3 cos~ pu !G . (A9)

The integration over u here leads to a complication.
When we split the integral in several terms, keeping the
lower limit finite at first, then one of the integrals has as
integrand sin(u)sin( pu), and this integral does not exist
in the upper limit. All others do, and there is no cancel-
lation of terms. In fact, the combination of all others
turns out to be identically zero. For this problematic
term we keep the upper limit finite for the time being, and
this gives
E
0

` du

u2 F S u 2
3

u D sin u 1 3 cos uGF S pu 2
3

pu D sin~ pu !

1 3 cos~ pu !G 5 pE
0

umax

du sin u sin~ pu !. (A10)

The integration variable u came from the substitution u
5 kr, so the upper limit is umax 5 kmaxr, with kmax the
radius of a sphere in k space. In Eq. (A10) it is under-
stood that eventually we take the upper limit to infinity.
Rather than evaluating this integral, we keep this repre-
sentation and substitute it into Eq. (A9). Then we inte-
grate over v first, yielding

I~b !MF 5 2
b

4
E

0

umax

du sin u lnS u 1 b

u 2 b D 2

1
ibp

2
E

0

umax

du sin u. (A11)

The first integral exists for umax → `, but a new problem
arises. The integrand has a singularity at u 5 b, and
the integral should be understood as a principal-value in-
tegral. We leave out the interval b 2 e , u , b 1 e,
and in the end we take the limit e → 0. Integration by
parts gives

E
0

`

du sin u lnS u 1 b

u 2 b D 2

5 4E
0

`

du cos u
1

b2 2 u2 ,

(A12)

where we have taken the limit e → 0 in the integrated
part. The right-hand side is still a principal-value inte-
gral, and with contour integration we obtain

E
0

`

du sin u lnS u 1 b

u 2 b D 2

5 2p sin b. (A13)

With Eq. (A11) we then find

I~b !MF 5
1
2 ibp@exp~ib ! 2 cos~kmaxr !#. (A14)

At this point we consider the limit kmax → `. Obviously,
this limit does not exist in the strictest sense. However,
every Green’s function is eventually multiplied by some
function of r, representing the source of the field, followed
by an integration over r. For kmax large, the term
cos(kmaxr) is very rapidly oscillating as a function of r and
will integrate to zero. Therefore at this stage we simply
leave this term out. It should be noted that such terms
occur frequently in inverse transforms that do not exist in
the strictest sense. The most notable example is the in-
tegral representation of the delta function. Then finally
with relation (A4) we recover the Green’s function for the
middle field.

For the near field we need to consider 4pk0
22( IJ

2 3k̂k̂)T(k0 /k)NF . Here we encounter a different type
of problem. As found in Section 7, we have T(0)NF
5 1/3, so that T(k0 /k)NF → 1/3 for k → `. For the in-
verse integral (4.2) to exist, it seems necessary that the
function to be inverted goes to zero sufficiently fast for
k → `, and that is apparently not the case here. In par-
ticular, the inverse of a constant function is a delta func-
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tion: d (r) ↔ 1. As a solution, we first subtract the con-
stant of 1/3 in T(k0 /k)NF , according to

gJ~r!NF ↔
4p

3k0
2 ~ IJ 2 3k̂k̂!

1
4p

k0
2 ~ IJ 2 3k̂k̂!@T~k0 /k !NF 2 1/3#. (A15)

Then we notice the transform pairs dJ(r) 5 d (r) IJ ↔ IJ

and dJ(r) l ↔ k̂k̂, with dJ(r) and dJ(r) l the dyadic delta
function and its longitudinal part, respectively. Since we
have

dJ~r! l 5
1

3
dJ ~r! 1

1

4pr3 ~ IJ 2 3 r̂r̂!, (A16)

the first term on the right-hand side of relation (A15)
transforms as

2
1

k0
2r3 ~ IJ 2 3 r̂r̂! ↔

4p

3k0
2 ~ IJ 2 3k̂k̂!, (A17)

which contains no delta function after all. The evalua-
tion of the inverse of the second term goes just as for the
far field and the middle field, except that we replace
T(k0 /k)aF by T(k0 /k)NF 2 1/3. Here we use representa-
tion (7.1), which already has the 1/3 split off. Without
any further complications we then obtain

1

k0
2r3 ~ IJ 2 3 r̂r̂!@1 2 exp~ik0r !#

↔
4p

k0
2 ~ IJ 2 3k̂k̂!@T~k0 /k !NF 2 1/3#, (A18)
and the sum of relations (A17) and (A18) then gives the
Green’s function for the near field, Eq. (5.2).
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