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Density matrix for photons in a cavity
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The transient behavior of the density operator for radiation in a single-mode cavity at a finite temperature
is considered. Any initial state will evolve toward thermal equilibrium because of the interaction with the
mirrors. This steady state is determined uniquely by the temperature, but the transient state depends on
the initial conditions. The equation of motion for the matrix elements of the density operator is solved
analytically, given an arbitrary initial state. The factorial moments, the generating function, and the time-
dependent spectral distribution are also obtained. The results yield known expressions in the appropriate
limits.
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1. INTRODUCTION
We consider radiation in a single-mode cavity at tempera-
ture T. If the radiation were in thermal equilibrium with
the cavity mirrors, then the average number of photons
would be1

neq ­
1

exps"vcykT d 2 1
, (1.1)

where vc is the resonance frequency and k is Boltzmann’s
constant. Coupling between the radiation and the mir-
rors leads to relaxation toward thermal equilibrium, and
in a finite-Q cavity the coupling parameter is K ­ vcyQ.
The equation of motion for the density operator r of the
radiation is2 – 4

i
dr

dt
­ sLr 2 iLcdr . (1.2)

The Liouville operator Lr accounts for the free evolution
and is given by

Lrr ­ vcfaya, rg , (1.3)

where ay and a are the usual photon-creation and
-annihilation operators, respectively. The mirrors of the
cavity give rise to damping in the time evolution, and
this is included in the equation of motion by means of the
Liouvillian Lc. This operator is defined as

Lcr ­ 1/2Kneqsaayr 1 raay 2 2ayrad

1 1/2Ksneq 1 1dsayar 1 raya 2 2arayd . (1.4)

We consider neq a free parameter of the system, repre-
senting the finite temperature. This neq is equal to the
average number of photons in the steady state, t ! `.
For T ­ 0 we have neq ­ 0, for which the terms repre-
senting thermal excitation in Eq. (1.4) vanish.

The formal solution of Eq. (1.2) is

rstd ­ expf2isLr 2 iLcdtgrs0d , (1.5)

showing that an arbitrary initial state rs0d determines
the solution for all t . 0. Of practical interest are the
0740-3224/96/061099-08$10.00 
matrix elements with respect to number states, rstdnm ­
knjrstdjml, and they are determined, in principle, by the
initial matrix elements rs0dnm. The set hrstdnmj depends
in a linear way on the initial set hrs0dnmj, as follows
from Eq. (1.5). If we can express the matrix elements
hrstdnmj as linear combinations of hrs0dnmj, then the coef-
ficients of the transformation matrix are the matrix ele-
ments of the evolution operator expf2isLr 2 iLcdtg. The
evaluation of this operator would also be relevant for
the Jaynes–Cummings model with cavity damping,5 – 14 in
which it is sometimes used to transform the equation of
motion to the dissipation picture. Recently Mufti et al.15

proposed a solution of Eq. (1.2) in the form of the Ansatz

rstd ­ expffstdgexpfastdaygexpf xstdayagexpfastdpag .

(1.6)

This Ansatz leads to a set of nonlinear equations for the
unknown functions fstd, astd, and xstd, and the initial val-
ues have to be determined from the factorization of rs0d
in the same form as in Eq. (1.6). It is not obvious how
that can be accomplished in general for an arbitrary rs0d.
This solution still involves exponentials of operators, al-
though in a much simpler form than in Eq. (1.5).

Taking the matrix elements of Eq. (1.2) with respect to
number states and using Eqs. (1.3) and (1.4) give

drnm

dt
­ 2isn 2 mdQrnm 2 1/2neq

3 fsn 1 m 1 2drnm 2 2
p

nm rn21,m21g

2 1/2sneq 1 1dhsn 1 mdrnm

2 2fsn 1 1dsm 1 1dg1/2rn11,m11j,

n, m ­ 0, 1, 2, . . . , (1.7)

where we have set t ­ Kt. Of particular interest are
the populations pnstd ­ knjrstdjnl, n ­ 0, 1, 2, . . . , which
equal the probabilities of finding n photons in the cavity
at time t. For m ­ n, Eq. (1.7) simplifies to

dpn

dt
­ 2neqhsn 1 1dpn 2 npn21j

2 sneq 1 1dhnpn 2 sn 1 1dpn11j , (1.8)
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which is a rate equation for the populations pnstd of
level jnl. The first two terms are excitations from and
to level jnl, and the next two terms are decays to and
from level jnl. Solutions of an equation of the type of
Eq. (1.7) have been found by an expansion in eigenfunc-
tions and eigenvalues of the coefficient matrix defined
by the right-hand side of Eq. (1.7).16 Equation (1.8)
has been solved for a variety of initial conditions by a
generating-function technique.17– 20 If the density op-
erator has a P representation, then Eq. (1.8) can be
transformed into a Fokker–Planck equation for this P
representation, which can subsequently be solved.1,21 In
this paper Eq. (1.7) is solved directly in terms of the
initial matrix elements, and the result is applied to the
evaluation of some quantities of interest.

2. GENERATING FUNCTION
Equation (1.7) couples only matrix elements with the
same value of m 2 n. Therefore we set m ­ n 1 l, with
l ­ 0, 1, 2, . . . , and consider l fixed. Then Eq. (1.7) cou-
ples rn,n1l for n ­ 0, 1, 2 . . . . Equation (1.7) can be sim-
plified with the following transformation:

gnstd ­ expfsneq 1 1/2 2 iQdltg

"
sn 1 ld!

n!

# 1/2

rn,n1lstd ,

(2.1)

which gives

dgn

dt
­ 2neqhsn 1 1dgn 2 sn 1 ldgn21j

2 sneq 1 1dhngn 2 sn 1 1dgn11j , (2.2)

and we set g21 ; 0. Equation (2.2) for gnstd is almost
identical to Eq. (1.8) for pnstd. Equations of this type are
most conveniently solved through the use of a generating
function.22 – 24 Let

gsx, td ­
X̀
n­0

xngnstd , (2.3)

with x an auxiliary parameter. Then we multiply
Eq. (2.2) by xn and sum over n. The resulting equation
can then be written as

≠g
≠t

­ s1 2 xdf1 1 neqs1 2 xdg
≠g
≠x

2 neqf1 2 xsl 1 1dgg ,

(2.4)

a partial differential equation for gsx, td.
Equation (2.4) can be solved with Laplace transform

in t (see Appendix A) or with the method of charac-
teristics.25,26 The solution is

gsx, td ­
expsneqltd

f1 1 us1 2 xdgl11
gsj, 0d , (2.5)

where we replace x in the initial generating function
gsx, 0d by the parameter

j ­
1 1 vs1 2 xd
1 1 us1 2 xd

. (2.6)

Here we have introduced the abbreviations

u ­ neqf1 2 exps2tdg , (2.7)

v ­ neq 2 sneq 1 1dexps2td . (2.8)
3. MATRIX ELEMENTS
The x dependence of the generating function determines
the quantities gnstd, because they are the Taylor coeffi-
cients in a series expansion around x ­ 0, according to
Eq. (2.3). Hence these quantities can be determined by
n-fold differentiation as

gnstd ­
1
n!

≠n

≠xn
gsx, td

É
x­0

. (3.1)

A complication here is that Eq. (2.5) contains the initial
generating function, with j as a variable. To express
gnstd in terms of a linear combination of all gns0d we set

gsj, 0d ­
X̀
k­0

jkgks0d (3.2)

in Eq. (2.5) and then substitute expression (2.6) for j.
Carrying out the n-fold differentiation then yields

gnstd ­ expsneqltd

√
u

1 1 u

!n X̀
k­0

gks0d
k!

sk 1 ld!
s1 1 vdk

s1 1 udk1l11

3
X
m

sk 1 l 1 n 2 md!
sn 2 md!m!sk 2 md!

"
2

vs1 1 ud
us1 1 vd

# m

. (3.3)

The summation over m effectively runs up to m ­
minsn, kd because of the factorials in the denominator.
Therefore the series over m is a finite sum.

The matrix elements of the density operator now follow
from transformation (2.1). We find that

rn,n1lstd ­ expfsiQ 2 1/2dltg

"
n!

sn 1 ld!

# 1/2√
u

1 1 u

!n

3
X̀
k­0

rk,k1ls0d

"
k!

sk 1 ld!

# 1/2
s1 1 vdk

s1 1 udk1l11

3
X
m

sk 1 l 1 n 2 md!
sn 2 md!m!sk 2 md!

"
2

vs1 1 ud
us1 1 vd

#m

(3.4)

for n, l ­ 0, 1, 2, . . . . With Qt ­ vct we see that rn,n1lstd
oscillates with the Bohr frequency vcl, as it should. The
remaining matrix elements follow from

rn1l,nstd ­ rn,n1lstdp, (3.5)

because r is Hermitian.
For l ­ 0 the coherences go over into the probabilities

pnstd. When we write

pnstd ­
X̀

m­0
Xn,mstdpms0d , (3.6)

then Xn,mstd is given by

Xn,mstd ­
un

s1 1 udn11

√
1 1 v
1 1 u

!m X
j

sm 1 n 2 j d!
sn 2 j d!j !sm 2 j d!

3

"
2

vs1 1 ud
us1 1 vd

# j

. (3.7)

The summation over j runs from j ­ 0 to j ­ minsn, md.
The quantity Xn,mstd can be considered the Green’s func-
tion, as it equals the probability pnstd when the initial
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state is the number state jmlkmj. In terms of the hy-
pergeometric function F sa, b, c; zd,27 Xn,mstd can be ex-
pressed as

Xn,mstd ­
un

s1 1 udn11

√
1 1 v
1 1 u

!m√
n 1 m

n

!

3 F

"
2n, 2m, 2n 2 m;

vs1 1 ud
us1 1 vd

#
, (3.8)

and with the identity√
n 1 m

m

!
F s2n, 2m, 2n 2 m; zd ­ F s2n, 2m, 1; 1 2 zd

(3.9)
this can be simplified to

Xn,mstd ­
un

s1 1 udn11

√
1 1 v
1 1 u

!m

F

"
2n, 2m, 1;

u 2 v
us1 1 vd

#
.

(3.10)

4. FACTORIAL MOMENTS
The factorial moment skstd of the probability distribution
is defined as the average of n!ysn 2 kd! for k ­ 0, 1, 2, . . . ,
e.g.,

skstd ­
X̀
n­k

n!
sn 2 kd!

pnstd . (4.1)

The inverse of this relation is

pnstd ­
X̀
k­0

s21dk

n!k!
sn1kstd , (4.2)

showing that either the set h pnstdj or the set hskstdj
uniquely determines the probability distribution. More-
over, both sets are related through the generating func-
tion according to

gsx, td ­
X̀
n­0

xnpnstd ­
X̀
k­0

sx 2 1dk

k!
skstd , (4.3)

showing that h pnstdj are the Taylor coefficients for an ex-
pansion around x ­ 0 and hskstdj are the Taylor coeffi-
cients for an expansion around x ­ 1 of the same function.

The evaluation of the factorial moments proceeds in the
same way as the derivation of the matrix elements from
the generating function. From Eq. (4.3) it follows that

skstd ­
≠k

≠xk gsx, td

É
x­1

. (4.4)

We set l ­ 0 in Eq. (2.5) and replace the initial generating
function by

gsj, 0d ­
X̀
l­0

sj 2 1dl

l!
sls0d , (4.5)

with j given by Eq. (2.6). Carrying out the k-fold differ-
entiation and letting x ! 1 yield

skstd ­
kX

l­0

√
k!
l!

!2
1

sk 2 ld!
uk2l exps2ltdsls0d . (4.6)

The factorial moment skstd is determined by the ini-
tial factorial moments sls0d for l # k only, whereas the
probability pnstd depends on all initial probabilities.
For k ­ 0 we have

sostd ­ sos0d ­
X̀
n­0

pnstd ­ Tr rstd ­ 1 . (4.7)

The significance of the higher factorial moments lies in
the fact that these are averages over the probability dis-
tribution and therefore relate to observable quantities.
For k ­ 1 we obtain the average number of photons in
the cavity at time t. We find that

nstd ­ s1std ­ u 1 s1s0dexps2td

­ neq 1 fns0d 2 neqgexps2td , (4.8)

showing that ns`d ­ neq, as it should. The variance in
the photon distribution is related to the second factorial
moment according to

Varstd ­
X̀
n­0

fn 2 nstdg2pnstd ­ s2std 1 s1std 2 s1std2,

(4.9)

and with Eq. (4.6) this becomes

Varstd ­ usu 1 1d 1 s2u 1 1dns0dexps2td

1 f Vars0d 2 ns0dgexps22td (4.10)

in terms of the parameter u. In the steady state we have
u ­ neq, and therefore Vars`d ­ neqsneq 1 1d, as expected
for a thermal distribution. The factorial moments for
k ­ 0, 1, 2 can also be derived directly from Eq. (1.8). If
we multiply Eq. (1.8) by 1, n, and nsn 2 1d, and then sum
over n, we obtain the relations

d
dt

X̀
n­0

pnstd ­ 0 , (4.11)

dn
dt

­ neq 2 n , (4.12)

ds2

dt
­ 22s2 1 4neqn , (4.13)

with the solutions given above. This procedure becomes
increasingly more complicated for the higher factorial mo-
ments.

5. SPECIAL CASES

A. Zero Temperature
In the limit of zero temperature we have neq ­ 0, u ­
0, and v ­ 2exps2td. The factorial moments simplify
to28,29

skstd ­ exps2ktdsks0d , (5.1)

and the quantities Xn,mstd become

Xn,mstd ­

8>><>>:
0 m , n√

m
n

!
exps2ntdf1 2 exps2tdgm2n m $ n

,

(5.2)

as follows from Eq. (3.7). This gives for the probabilities

pnstd ­
X̀

m­n

√
m
n

!
exps2ntdf1 2 exps2tdgm2npms0d .

(5.3)

This solution has been known for a long time30 and has
been derived in many different ways. It is a Bernoulli
distribution over the initial distribution; exps2td is the
probability that a photon is still in the cavity at time t

when it was in the cavity at time t ­ 0.
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B. Steady State
For t ! ` we have from Eq. (3.4)

rn,n1ls`d ­ dl,0pns`d , (5.4)

e.g., the coherences die out. For t ! ` we have u ­ v ­
neq, and with Eq. (3.7) this gives

Xn,mstd ­
neq

n

s1 1 neqdn11

X
j

sm 1 n 2 j d!
sn 2 j d!j !sm 2 j d!

s21dj .

(5.5)

The summation over j can be performed:

X
j

sm 1 n 2 j d!
sn 2 j d!j !sm 2 j d!

s21dj ­ 1 , (5.6)

which becomes independent of m. We can prove
relation (5.6) by multiplying both sides by zn and sum-
ming over n. Both sides then yield the same sum, which
proves Eq. (5.6). With Eq. (3.6) we obtain

pns`d ­
neq

n

s1 1 neqdn11
, (5.7)

the thermal distribution. The corresponding factorial
moments are

sks`d ­ k!neq
k , (5.8)

as follows from Eq. (4.6) (only the l ­ 0 term survives).

C. Thermal State
If the initial state is a thermal state with no photons,
then the initial distribution is given by Eq. (5.7) with
neq replaced by no. This corresponds, for instance, to a
sudden change in temperature of the cavity. The initial
factorial moments are sls0d ­ l!no

l. When we substitute
this into Eq. (4.6) the summation can be performed, with
the result that

skstd ­ k!nstdk, (5.9)

where nstd ­ neq 1 sno 2 neqdexps2td. This shows that
the distribution is a thermal distribution at all times.
The probabilities are given by Eq. (5.7) with neq replaced
by nstd.

D. Coherent State
Let the initial state be a coherent state, e.g., rs0d ­ jalkaj,
with a complex. The initial matrix elements are then

rk,k1ls0d ­
jaj2ksapdl

fk!sk 1 ld!g1/2
exps2jaj2d . (5.10)

Substitution into the general solution [Eq. (3.4)] leads to
a series of the type

X̀
k­m

sk 1 l 1 n 2 md!
sk 1 ld!sk 2 md!

zk ­ sn 2 md!zmezLsl1md
n2m s2zd ,

(5.11)

with Lskd
n sxd a generalized Laguerre polynomial. The

summation over m in Eq. (3.4) then has the form
nX
m­0

s2xdm

m!
Lsl1md

n2m s2yd ­ Lsld
n sx 2 yd . (5.12)

We can prove Eqs. (5.11) and (5.12) by showing that both
sides have the same generating function. Combining
everything then yields for the matrix elements of the den-
sity operator

rn,n1lstd ­ exp

"
2

jaj2exps2td
1 1 u

1 siQ 2 1/2dlt

#

3

"
n!

sn 1 ld!

# 1/2
unsapdl

s1 1 udn1l11
Lsld

n

"
2jaj2

exps2td
us1 1 ud

#
.

(5.13)

When we set l ­ 0, these are probabilities pnstd, and we
recognize this as a noncentral negative binomial distribu-
tion. Such states were introduced in quantum optics as
a superposition of a coherent state and a thermal state,
and they form an interpolation between these two states.
The numbers of coherent and thermal photons are

nc ­ jaj2 exps2td, nt ­ u ­ neqf1 2 exps2tdg ,

(5.14)

respectively. The properties of these states have been
studied extensively.31 – 36 Such states are also the output
of a linear amplifier with a coherent input,37,38 which pro-
vides a different way of generating these states. The ini-
tial factorial moments are sls0d ­ jaj2l, and with Eq. (4.6)
they give

skstd ­ k!ukLk

(
2

jaj2

neqfexpstd 2 1g

)
. (5.15)

6. CORRELATION FUNCTION
The spectral distribution of the radiation in the cavity is
determined by the correlation function kayst1dast2dl, with
t2 $ t1 $ 0. In the Schrödinger picture this is

kayst1dast2dl ­ Tr a expf2isLr 2 iLcdst2 2 t1dgfrst1dayg

(6.1)

in terms of the evolution operator for the density matrix,
as shown in Eq. (1.5). Taking the trace gives

kayst1dast2dl ­
X̀
n­0

p
n 1 1 kn 1 1jhexpf2isLr 2 iLcdst2 2 t1dg

3 f rst1daygjjnl . (6.2)

The sn 1 1, nd matrix element is given by the com-
plex conjugate of Eq. (3.4), with l ­ 1. The initial
values now become rk11,ks0d ! kk 1 1jf rst1daygjkl ­p

k 1 1 rst1dk11,k11, and this gives

kayst1dast2dl ­ expf2siQ 1 1/2dtg

3
X̀
n­0

X̀
k­0

rst1dk11,k11
un

s1 1 udn12

√
1 1 v
1 1 u

!k

3
X
m

sk 1 n 1 1 2 md!
sn 2 md!m!sk 2 md!

"
2

vs1 1 ud
us1 1 vd

# m

,

(6.3)
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with t ­ Kst2 2 t1d. First we perform the summation
over n, and then the summation over m. Then Eq. (6.3)
simplifies to

kayst1dast2dl ­ expf2siQ 1 1/2dtg
X̀
k­0

sk 1 1drst1dk11,k11 ,

(6.4)

and this is

kayst1dast2dl ­ expf2sivc 1 1/2Kdst2 2 t1dgnst1d , (6.5)

with the average number of photons given by Eq. (4.8)
with t ! Kt1. It appears that the temperature depen-
dence of the correlation function enters only through nst1d.
The regression t1 ! t2 is temperature independent. Also,
the only dependence on the initial density operator is
through nst1d, which is determined by ns0d only.

7. SPECTRUM
The spectral distribution of the radiation in the cavity is
essentially time dependent, because the density operator
evolves in time. Suppose that the radiation is prepared
in a state rs0d at time t ­ 0 and that we start the fre-
quency measurement at time t ­ 0. The electric field in
the cavity is measured with a frequency filter with setting
frequency v. The time-dependent spectrum is then the
photon-counting rate by a detector, after filtering. This
is the physical spectrum of light,39 and we shall indi-
cate this spectrum by I sv, td. It can be shown40 that the
physical spectrum can be expressed in terms of a quasi-
spectrum Jsv, td according to

I sv, td ­
Z t

0
dt0

Z `

2`

dv0ssv0, t0dJsv 2 v0, t 2 t0d , (7.1)

where the smoothing function ssv, td depends only on the
detector properties. The quasi-spectrum was introduced
by Page41 and by Lampard42 and is given by

Jsv, td ­
z

p
Re

Z t

0
dt0 expfivst 2 t0dgkayst0dastdl . (7.2)

Here it is assumed that the positive frequency part of
the electric field (in the Heisenberg picture) is propor-
tional to the annihilation operator astd and that overall
constants are collected in the parameter z . If the corre-
lation function is stationary, then Jsv, td reduces to the
Wiener–Khintchine spectrum for t ! `. When we take
for the frequency filter an exponentially decaying func-
tion, then ssv, td becomes

ssv, td ­
2g3

g2 1 v2
exps22gtd . (7.3)

This shows that the frequency resolution of the filter is g,
whereas the time resolution in the detection of the arrival
of a photon is 1yg.

The correlation function in Eq. (7.2) was evaluated in
Section 5, and the integral over t0 is easily calculated.
We obtain
Jsv, td ­
z

p
neq Re

expfsisv 2 vcd 2 1/2Kdtg 2 1
isv 2 vcd 2 1/2K

1
z

p
fns0d 2 neqgexps2Ktd

3 Re
expfsisv 2 vcd 2 1/2Kdtg 2 1

isv 2 vcd 1 1/2K
.

(7.4)

Then we introduce the dimensionless variables

t ­ Kt, l ­ sv 2 vcdyK, N ­ neqyns0d , (7.5)

work out the real parts, and suppress a factor of
zns0dypK. This yields for the quasi-spectrum

Jsl, td ­
2

1 1 4l2
hexps21/2td

3 fcossltd 1 2l sinsltd 2 exps21/2tdg

1 N f1 1 exps2td 2 2 cossltdexps21/2tdgj .

(7.6)

The first part is independent of the temperature, and it
vanishes in the long-time limit. The second part, propor-
tional to neq, survives, and in the steady state it becomes

Jsl, `d ­
2N

1 1 4l2
, (7.7)

Fig. 1. Plot of the quasi-spectrum Jsl, td as a function of l
for N ­ 1. Curves a and b correspond to t ­ 1 and t ­ 2,
respectively. The quasi-spectrum narrows with increasing t

and eventually approaches a Lorentzian with a HWHM of 1y2.
Notice that the quasi-spectrum can become negative, indicating
that it is not the observable spectral distribution of the radiation.

Fig. 2. Temperature dependence of the quasi-spectrum.
Curve a represents zero temperature for the steady state sN ­
0d, so the cavity is cooling off. For curve b we took N ­ 2, giving
neq ­ 2ns0d, and therefore this spectrum represents radiation
that is warming up. The evolution time was taken as t ­ 1.
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a Lorentzian with a half-width at half-maximum
(HWHM) equal to 1y2 (and this is Ky2 as a function of
v). The quasi-spectrum is symmetric around l ­ 0.
Figure 1 illustrates the behavior of Jsl, td for two values
of t, and Fig. 2 shows the effect of a finite temperature.

Fig. 3. Graphs of the physical spectrum I sl, td as a function of
l for ĝ ­ 0.1 and N ­ 1 [constant temperature between time zero
and time t, because nstd ­ neq according to Eq. (4.8)]. Curves
a and b represent t ­ 1 and t ­ 2, respectively, and it is seen
that the spectrum narrows with increasing time. The physical
spectrum is positive by construction.

Fig. 4. Illustration of the temperature dependence of I sl, td.
For curves a and b we have N ­ 0 and N ­ 2, respectively, and
we took t ­ ĝ ­ 1.

Fig. 5. Physical spectrum for t ­ 20 and N ­ 1. For curves a
and b we have ĝ ­ 0.4 and Ùg ­ 4, respectively. The spectrum
broadens significantly for increasing ĝ, and for ĝ .. 1 the width
is dominated by the resolution of the detector. Curve b has been
multiplied by a factor of 50, so both curves have the same value
at l ­ 0.
The physical spectrum then follows from Eq. (7.1).
The v 0 integrals can be carried out by contour integra-
tion. We obtain

I sv, td ­ 2zg2

√√√
neq Re

1
1/2K 1 g 2 isv 2 vcd

(
1 2 exps22gtd

2g

2
expfsisv 2 vcd 2 g 2 1/2Kdtg 2 exps22gtd

g 2 1/2K 1 isv 2 vcd

)

1 fns0d 2 neqgRe
1

1/2K 2 g 1 isv 2 vcd

3

(
expfsisv 2 vcd 2 g 2 1/2Kdtg 2 exps22gtd

g 2 1/2K 1 isv 2 vcd

2
exps2Ktd 2 exps22gtd

2g 2 K

) !!!
. (7.8)

Changing again to dimensionless parameters, introducing
ĝ ­ gyK, working out the real part, and suppressing a
factor of 2zg2ns0dyK2 then give for the physical spectrum

I sl, td ­ N
1 2 exps22ĝtd

2ĝ

ĝ 1 1/2
sĝ 1 1/2d2 1 l2

2
N

fsĝ 1 1/2d2 1 l2gfsĝ 2 1/2d2 1 l2g
3 ssssĝ2 2 1/4 1 l2dhcossltdexpf2sĝ 1 1/2dtg

2 exps22ĝtdj 1 l sinsltdexpf2sĝ 1 1/2dtgddd

1 1/2
1 2 N

sĝ 2 1/2d2 1 l2 hexps22ĝtd 1 exps2td

2 2 cossltdexpf2sĝ 1 1/2dtgj . (7.9)

This spectrum is also symmetric around l ­ 0, and its
steady-state value is

I sl, `d ­
ĝ 1 1/2

2ĝ

N
sĝ 1 1/2d2 1 l2

, (7.10)

a Lorentzian with HWHM ­ ĝ 1 1/2 around l ­ 0 or
g 1 1/2K around v ­ vc. Because of the finite observa-
tion time t and the time evolution of the system, the spec-
trum deviates considerably from a Lorentzian for t , `.
Typical behavior of I sl, td is shown in Fig. 3 for two val-
ues of t, and Fig. 4 illustrates the dependence on the
temperature. The frequency resolution ĝ also affects the
physical spectrum, as shown in Fig. 5. The spectrum
broadens considerably with increasing ĝ, as could be ex-
pected, and the peak value diminishes because the avail-
able energy is distributed over a larger frequency range.

8. CONCLUSIONS
The equation of motion for the density matrix of radia-
tion in a single-mode cavity at finite temperature has been
solved for its matrix elements, with Eq. (3.4) as the result.
The populations at time t (or t) are linear combinations
of the populations at time zero, and this relation could be
expressed in terms of hypergeometric functions, as shown
in Eq. (3.10). A particular simple relation exists between
the factorial moments at time t and at time zero, as given
by Eq. (4.6). In Section 5 it was shown that our solu-
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tion reduces to known results in limiting cases. From
the time evolution operator for the density operator we
can obtain the time regression of correlation functions of
field operators. In Section 6 the two-time field correla-
tion was calculated, and this was subsequently used to
evaluate the quasi-spectrum and the physical spectrum
of the radiation in the cavity. It appears that both spec-
tra depend strongly on the observation time, the spectral
resolution of the detector, the cavity damping rate, and
the temperature difference between time t and time zero.
Only in the long-time limit (thermal equilibrium) and for
perfect frequency resolution by the detector do these spec-
tra become Lorentzians with a HWHM equal to the cavity
damping rate Ky2.

APPENDIX A
To solve Eq. (2.4) we adopt a Laplace transform in t.
With

g̃sx, sd ­
Z `

0
dt exps2stdgsx, td (A1)

Eq. (2.4) becomes

hs 1 neqf1 2 xsl 1 1dgjg̃ 1 sx 2 1d

3 f1 1 neqs1 2 xdg
≠g̃
≠x

­ gsx, 0d , (A2)

where gsx, 0d is assumed to be known. The generat-
ing function is defined as a Taylor series around x ­ 0.
Equation (A2) is a linear first-order equation in x, and the
general solution therefore contains one integration con-
stant. For x ­ 0 we have gs0, td ­ g0std, according to
Eq. (2.3), and this is an unknown quantity. However, if
we set x ­ 1 in Eq. (2.4) we get

≠g
≠t

­ neqlg , (A3)

with the solution

gs1, td ­ expsneqltdgs1, 0d (A4)

and the Laplace transform

g̃s1, sd ­
1

s 2 neql
gs1, 0d . (A5)

This gives us the integration constant for Eq. (A2).
The solution of Eq. (A2) is then

g̃sx, sd ­
f1 1 neqs1 2 xdgs212lsneq11d

sx 2 1ds2lneq

3
Z x

1
dj

sj 2 1ds212lneq

f1 1 neqs1 2 jdgs2lsneq11d gsj, 0d . (A6)

That this solution reduces to Eq. (A5) in the limit x ! 1
follows from a Taylor expansion of the integrand around
j ­ 1 and a term-by-term integration.

We can find the Laplace inverse of Eq. (A6) by making
a change of integration variable j ! t according to
exps2td ­
1 1 neqs1 2 xd

1 2 x
1 2 j

1 1 neqs1 2 jd
. (A7)

This yields the representation

g̃sx, sd ­
Z `

0
dt exps2std

"
1 1 neqs1 2 jd
1 1 neqs1 2 xd

# 11lsneq11d

3

√
1 2 x
1 2 j

!lneq

gsj, 0d . (A8)

But this identical in form to Eq. (A1), and therefore the
inverse is

gsx, td ­

"
1 1 neqs1 2 jd
1 1 neqs1 2 xd

# 11lsneq11d√
1 2 x
1 2 j

! lneq

gsj, 0d .

(A9)

The function jsx, td follows from inversion of Eq. (A7),
and this is

jsx, td ­
1 1 sx 2 1dfsneq 1 1dexps2td 2 neqg

1 1 neqs1 2 xdf1 2 exps2tdg
. (A10)

When we eliminate j in favor of t in Eq. (A9) we obtain

gsx, td ­
expsneqltd

h1 1 neqs1 2 xdf1 2 exps2tdgjl11
gsj, 0d ,

(A11)

which is Eq. (2.5).
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