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Time evolution of radiation in a damped cavity
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Abstract. Any initial state of the radiation field in a finite-Q cavity relaxes
towards thermal equilibrium . For the case of a zero-temperature cavity, it is
shown that the factorial moments of any photon distribution evolve independ-
ently, and have the same time evolution . This is applied to evaluate the transient
behaviour of the photon statistics for a variety of initial states of practical interest .
The coherences of the density operator obey the same equation of motion as the
populations (the photon probability distribution), after a simple transformation .
This is used to recover the result that a coherent state remains a pure and coherent
state at all times. Also the time-dependent frequency spectrum has been
evaluated, and it appeared that this spectrum is the same for any state of the
radiation field . The spectral distribution is determined entirely by the cavity
damping rate, the spectral width of the detector, and the observation time .

1. Introduction
Radiation in a single-mode optical cavity is probably the simplest quantum-

mechanical system, but is still of current interest, in particular with respect to the
generation of squeezed states . The probability to find n photons in the cavity at time t
is determined by the density operator p of the radiation field according to

p„(t)=P„.(t)=<nIP(t)In>,

	

n=0,1,2, . . .,

	

(1)
where In> is a number state . The free evolution of the density operator is governed by
the Liouvillian L„ defined as

Lrp = wr[ata, P],

	

(2)

with w, the cavity frequency, and a and at the annihilation and creation operators,
respectively . In a finite-Q cavity, radiation is absorbed by the mirrors, and this gives
rise to damping in the time evolution of p(t) . This relaxation can be accounted for by
a Liouvillian L,, given by [1]

Lip =ZK(atap+pata-2apat), (3)

in the limit of zero temperature, and with K= w,/Q . Then the equation of motion for
p(t) becomes

i dP=(Lr-iLc)p .

	

(4)

The effect of damping on the photon statistics of a squeezed state has been studied
recently by Marian and Marian [2] . Of related interest is the problem of a two-state
atom in a single-mode cavity, e .g., the Jaynes-Cummings model . When atoms are
injected into a cavity, then during the time in between the passages of two atoms, the
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radiation field evolves according to (4) . In the presence of an atom, the equation of
motion has to be integrated numerically [3] . The effects of cavity damping in the
Jaynes-Cummings model has been studied extensively [4-14] .

2 . Probability distribution
By taking diagonal matrix elements with respect to number states in the equation

This equation can be solved by Laplace transform, and the solution is well known
[2, 15] . For applications later on, we would like to give a simplified derivation of this
solution . When we multiply (7) by n!/(n-k)!, with k=0, 1, 2 . . . . but fixed, use the
convention that the factorial of a negative integer is infinite, and then sum over n, we
find

d

	

n!

	

-k(	
n !

dT (n-k) .

	

(n-k)! >

The factorial moments s k(T) of the probability distribution p n (T) are defined as

(8)

n i
sk(T)=

	

Pn(T)=K nI

	

)(T),

	

k=0,1, 2, . . .,

	

(9)n=o (n-k)!

	

(n-k)1

and with (8) it then follows that the factorial moments obey the equation of motion

d
dT Sk(T) _ - ksk(T) .

	

(10)

Equation (7) for pn couples the probabilities with different n values, but in (10) the
factorial moments for different k evolve independently . In this sense, the transform-
ation to factorial moments diagonalizes (7) .

The solution of (10) is

sk (T) = exp (- kT)s k (0),

	

(11)

in terms of the initial factorial moments sk(0) . This has been found before in a
different way [2] . For a given initial state p(0) of the radiation field, the probabilities
p,,(0) follow from (1) with T= 0. Then the initial factorial moments are determined by
(9) with T=0, after which (11) gives the factorial moments for all times . The
probabilities as a function of time follow from the inverse of (9), which is in general

p,(T)=-

	

(
kl)k Sn+k(T),

	

(1 2)

of motion (4) we obtain

dpn
(5)=K[(n + 1)pn+ i - npn] .dt

In terms of the dimensionless time T :

T = Kt, (6)

this becomes

(7)dpn =(n+1)pn+i - npn .dT
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as can be checked by inspection . Finally, with solution (11) this can be expressed in
terms of the factorial moments s k (0), and with (9) with t = 0 we can express this again
in terms of the initial probabilities. The result is

pn(r)=

	

(M)
exp (-nt) [1-exp (-t)]m-"pm(0) .

	

(13)m=n n

This probability distribution p,(-r) is a Bernoulli distribution over the initial
distribution p"(0), and it has the interpretation that each photon that was in the cavity
at time t=0 has a probability of exp (-t) for still being in the cavity at time t, as is
well-known [15] .

Fort large, e.g ., t>>1/K, this reduces to

pn( 00 )= an,0,

which is the thermal-equilibrium distribution at zero temperature, corresponding to
no photons left in the cavity . The corresponding factorial moments are

sk(00 ) = ik,o *

Notice that for k = 0 we have

cc

so(r) = Ypn(t)=Trp(t)=1,

	

(16)
n=o

which is nothing but the normalization of the density operator .

3. Average, variance, and q factor
The average number of photons in the cavity at time t is

n(T)=<n>(t)=s1(r),

	

(17)

and with (11) this becomes

n(t) =exp (- t) n(0) . (18)

The variance of the distribution can be expressed in terms of the factorial moments
as

(14)

var (r)=<n2>(r)-<n>(r)2=s2(t)+s1(r)-s1(r)2,

which can be evaluated with (11) . The normalized variance is Mandel's q factor

(19)

With t=Kt this shows that the q factor decays with a time constant of 1/K for any
initial distribution of the radiation . It also implies that a sub-Poisson distribution
(q<0) remains sub-Poisson for all times .

var(t)-n(t) =
4(r) =

S2(T) -s1 (t) 2 (20)

and with (11) this becomes

n(t) sl(r)

(21)q(r) = exp (- r) q(0) .
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4 . Special cases
4.1 . Number state

When the initial state is a number state with exactly no =0,1, 2 . . . . photons in
the cavity, then the initial probability distribution is given by

pn(O) = an,nor

and the initial factorial moments are

(22)

SO)

	

n0!

	

(23)
(no -k)! .

This gives n(0) =no and q(O) = - 1 . The time-dependent factorial moments are then
given by (11), and the 'r-dependent probability distribution becomes

pn(T)=C n / exp (-nT) [1-exp(-T)]1"°(24)

This is a binomial or Bernoulli distribution, as could be expected . Notice that
pn(T)=0 for n>no , as it should be, due to the binomial coefficient .

4.2. Coherent state
For a coherent state Ian, a complex, as initial state, the probability distribution is

)
a

I
2n

pn(0)=, exp( - IaI 2 ),

	

(25)n

which gives for the factorial moments

SO) = I IX I2k .

	

( 26)

This is a Poisson distribution with n(O)=IaI 2 and q(0)=0 . The time-dependent
probabilities then are

IaI 2n
pn(T)=	 ni	 exp[ - nT - IaI 2 eXp(-T)],

	

(27)

and this is again a Poisson distribution, with effectively

IaI 2 ->IaI I exp (-T) .

	

(28)

4.3. Binomial distribution
The binomial distribution, as initial state, is defined as

pn(O)=~
no),,.(,

	

(29)

with /3 and no =0, 1, 2 . . . . as free parameters. The values of /3 are restricted by
0 < fl 1 . The average number of photons is n(0)=fin, and the q factor is q(0)= -/3 .
Consequently, this distribution has sub-Poisson statistics . It has furthermore the
interesting property that it interpolates between a number state and a coherent state .
For /3=1 this is the distribution for the number state with no photons . For fl-+0,
no -* a , with the product #no remaining finite, this is the Poisson distribution of the



coherent state, with IaI 2 =fno . With (9) we obtain for the factorial moments of the
initial distribution

and hence the time-dependent probability distribution is given by

p"(T)= (jpn exp (-nT) [1-a exp (-T)]"o-n

	

(33)

This illustrates the computational advantage of the use of factorial moments, rather
than relation (13) directly .

4.4 . Thermal field
For a finite temperature thermal state as initial distribution we have [16]

Pn(0 ) =

	

nt

	

1

	

(34)
(n t +1)n+

with n t > 0 as free parameter. For this distribution we have n(0) =q(0) = n, and the
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4.5. Negative binomial distribution
An interpolation between a coherent state and a thermal state is provided by the

negative binomial distribution [17, 18] . Such states can be generated in parametric
amplification [19] . In terms of the two free parameters d and C, with d>, 1 and
0< C < 1, the initial distribution is given by

+d-1
pn(0)=

n +d-1

	

(39)
d

factorial moments are
s,(0) = Mn, . (35)

With (11) we then find

sk(T)=k![nt exp ( - T)] k , (36)

and consequently this is again a thermal distribution, with effectively

n, -+n, exp (- T) . (37)

The probability distribution therefore becomes

n t exp (-nT)
(38)Tp"( ) = [ntexp(-r)+1]"+i

(30)o! k)f ,Sk(0)= fk(no

and with (11) we then obtain

no ! (31)o! k)I .
k)!

This is again a binomial distribution, with effectively

fl-fl exp(-r), (32)
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The average number of photons is

n(0)=d( -1
/

.

	

(40)

Alternatively, we can consider na = n(0) > 0 instead of C as independent parameter, in
terms of which the probability distribution becomes

F(n + d)

	

na
pn(~) - dd	

n!F(d) (na+can+d '

For d=1 this is the thermal distribution, and in the limit d-+ oo this becomes the
distribution of a coherent state . The factorial moments are

sk(0)=d(d+1) . . .(d+k-1)Ca)k,

	

k=1,2, . . .,

	

(42)

and so = 1 . From (42) and (20) we find q(O)=n,,/d>0, and therefore the statistics are
super-Poissonian . Then the time-dependent factorial moments become

4.6 . Non-central negative binomial distribution
A superposition of a coherent state and a thermal state is a non-central negative

binomial distribution [20] . Such states correspond to the output of a linear amplifier
when the input is a coherent state [21, 22] . This distribution has as free parameters
n, > 0, n, > 0, and d > 1, and is given by

0 -_ ddn,

	

C

n~

'

1 °° F(m + n + d) C n,d2
~m

Pn( ) (d+n,)n+d eXp -n,
d

n! M=O m!F(m+d) n,(d+n,)

	

(46)

For n,=0 only the m=0 term survives, and this reduces to the negative binomial
distribution with na =n,. For n,=0 and d=1 this is the thermal distribution with n t
photons, and for n,=0 it reduces to the coherent distribution with 1061 2 =n,,
irrespective of the value of d. The average number of photons is ii(O) =n,+n t and the
q factor turns out to be

q(0) = nt n, + 2n,d	
nt+n. >0'

	

(47)

corresponding to super-Poisson statistics . With equation (9) we can evaluate the
initial factorial moments, which gives after some manipulations

s0

	

n,n, k - F(m+d+k) n,d1m
k( ) - - ex p

-n,
d

d =o m!F(m+d) C nt /

	

(48)

n k
sk(T)=d(d+1) . . .(d+k-1)

d
exp(-kT), (43)

which shows that the T-dependence effectively gives

n,,-+na exp (-T) . (44)

Therefore, the probability distribution is

pn(T)=ddF(n+d)

	

naexp(-nT)
(45)

n!F(d) [n a exp(-T)+d]n +a



The series in (46) and (47) can be expressed in terms of generalized Laguerre
polynomials, defined by

L(")(x)= "

	

F(n+a+1)

	

(-x)m
"

		

a>-1,

	

n=0,1,2, . . . . (49)
m=o (n-m)!I'(m+a+1) m!

This yields

Pn

	

(	
ddn

	

n,d

l n

_ 1)

	

( dZ )'
(0) _
	
d+n,)n+d

exp

	

d+n, L (d

	

n~ d+n,)

	

(50)

k

Sk(0)=k! d Lkd- '~ - ǹ dl

	

(51)
/t

The time-dependent factorial moments then follow from (11), which gives

k

Sk(T)=k!

ntexp(-T) Lkd-1) (_r).t2̀ d

	

(52)
r

The time dependence is seen to give effectively the substitution

(ne , n, d)-> [n . exp (- T), n, exp (- T), d],

	

(53)

in the initial state, and therefore the probability distribution is

ddniexp (- nt)

	

(-de

nod

	

(d- 1)

	

n,d2
P"(T)=[d+n,exp(-T)]n+d exp`+n,

Ln

	

( n,[d+n, exp (- T)]

	

(54)

5 . Coherences
When we take the (ni . . .Im> matrix element of the equation of motion (4), then set

m = n + l, and let again T = Kt, we obtain

aT p.,n+ ,= i - l - (n+Zl) pn,n+,+[(n+1)(n+1+1)]11ZPn+l,n+1+,,
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(55)

For l= 0 this reduces to the equation of motion (7) for the probabilities p n(T) . For I :A 0
only the coherences along a diagonal in the density matrix couple together . In order
to solve (55) we make the transformation

I 1/2

rn,i(T)=C
(n

n
l)

	

exp[l(2-iK T_IPn,n+,(T),

	

(56)
! 1

	

)
which gives

dr.,,
dT

=(n+1)rn+nr",, .

	

(57)

This equation of motion for r" , ,( T) is identical in form to the equation of motion (7)
for p"(T), for a given 1, and therefore it has the same solution :

r " ,1(T)= Y-
(m)

exp(-nT)[1-p

	

exp (-T)] m (58)
m=n nn
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Transforming back to the coherences then gives the solution

w e

	

1

	

1
Pn,n+i(T)=exp iIK r-(n+'

	

m=n (m-n)!

m!(m+l)! 1 / 2
x [1-exp (-T)]m-n

n!(n+l)!

	

P
.'.

+1(0)

in terms of the initial coherences . This solution, in a slightly different form, has been
found before by Laplace transformation and contour integration [2] . For 1=0
equation (59) reduces to (13) .

6 . Pure states and mixtures
A state of the radiation field is a pure state if and only if Tr p2 = 1 . When an initial

state is prepared as a pure state, then due to the cavity damping it will evolve into a
mixture, in general. For T- oc, any state becomes a pure state, since p(co)=IO><OI,
the vacuum, which is a pure state. With

TrP(T) 2 =

	

~, IPn,k(T)I 2 ,

	

(60)
n=0k=0

and the solution (59) for the coherences, this expression can be evaluated for a given
initial state . It will not always be possible, however, to sum the double-series
analytically .

As an example, consider the thermal distribution for which the density operator
is diagonal :

Pn,k(O)= (n!k!) 112 exp(-IaI2) .

(59)

The right-hand side increases monotonically from 1/(1+2n,) to unity .
Another interesting example is the coherent state as initial state . Then the initial

density-operator matrix elements are

(63)

Then we let k=n+l, and substitute this into equation (59). Carrying out the
summation then yields

a~ 1

+

1 0( 1 2n

	

1
Pn,n+1(T)=[n !(n) 21/2exp ilkT-Cn+1 l)T-Ial2 exp(-T) .

	

(64)

Then we set 1=k-n, substitute this into (60), and evaluate the double sum . We then
find

Tr p(T) 2 =1,

	

(65)

P(T)= Y In>P (T)<nI , (61)
n=0

with p,,( -r) given by (38) . We then find

Tr

	

=

	

1= Y_p(r)2

	

P.(,r)' (62)
n=o

	

1+2n,exp(-T)
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for all T . This shows that a coherent state remains a pure state during the time
evolution in a damped cavity . The state vector is

I~P(z)> =exp [-2IaI2 exp (-T)]n~
V n!

exp -inK z-2 iwr In),

	

(66)

because the corresponding density operator p(T)=I W(T)).<'P(z)I has matrix elements
given by (64) . Furthermore, this state vector is a coherent state for all T, with
effectively

1

	

w~
a -+a exp

(_2
T-1KT

	

(67)

7. Physical spectrum
The state of the radiation field in the cavity is essentially time dependent due to

the damping, and therefore the frequency distribution of this radiation will depend
on time. Let P + ) (t) be the positive-frequency part of the electric field operator in the
Heisenberg picture at the location of a detector. In front of the detector is a frequency
filter with setting w, which transmits a filtered field given by

P + ) (t) = Jdt'exp(-iwt')f(t')E'~+)(t-t') .

	

(68)
0
~

The function f(t) depends on the filter, and is usually an exponential . In (68), the
contribution of the free field, which is the modified vacuum near the spectrometer,
has been neglected [23-25] . The time-dependent physical spectrum of light, as
introduced by Eberly and Wodkiewicz [26], is then the photon counting rate by a
detector in this filtered field :

In this way, J(w, t) depends only on the field and s(w, t) depends only on the detector .
A common choice for f(t) is

f(t) =yeXp( - yt),

	

y>0,

which gives for the smoothing function

(73 )

2y 3 exp (- 2yt) (74)s w t =( ,)

	

y 2 +co2

Here, is an overall factor depending
and

	

is the Hermitian conjugate

I(w, t)=~<E' -'(t)EI +) (t)> .

on the detector efficiency, the aperture,

(69)

etc .,
of

	

The physical spectrum can be written as
[27]

I(w, t) = f "0

dt' dw s(w', t')J(w-co , t - t'), (70)

with the smoothing function
o
s(w,

J -~

t) defined by

~dt'exp (i(ot')f(t)f(t+t')*, (71)s((.o , t)=2 Re
J

and the quasi- or Page-Lampard

0

spectrum J((o, t) given by [28, 29]

J(w, t)=-Re dt' exp (i (o t') <L (t-t')P + ) (t)> . (72)
r< 0
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The frequency dependence is a Lorentzian around w=0 with half-width at half
maximum (HWHM) equal toy, and the function decays in time on a time scale of 1 /y .

8 . Field correlation function
We assume that the field in the cavity is prepared in a certain state at t=0, and

that the detection of the field starts at this time. Then we have P +)(t) =0 for t < 0 .
Furthermore, E+)(t)oca(t), the annihilation operator, and this gives for the quasi
spectrum

J(w, t) = 1 Re ~~ dt' exp (1wt') (at (t-t')a(t)>,

	

(75)
n

	

'0

where some overall constants have been suppressed . The field correlation function
(at(t-t')a(t)) can be expressed in terms of Schrodinger operators as

(at(t-t')a(t)>=Traexp[-i(L,-iL,)t'][p(t-t')at],

	

(76)

for t' 0. Taking the trace gives

(at(t-t')a(t)>= > (n +1) 112 (n+11 {exp[-i(L,-iL,)t'][p(t-t')at]}In> .

	

(77)
n=0

The equation of motion (4) for the density operator has the formal solution

p(t) = exp [-i(L,-iL,)t] p(0),

	

(78)

which is governed by the same exponential of Liouvillians as the correlation function
in (77). Therefore, the matrix element (n+1I . . .In> in (77) is related to the matrix
elements of [p(t-t')at] in the same way as pn+l, .(t) is related to the matrix elements
of p(0) . From (59) we find

°° m
pn+1 , n(t)=exp[-iw,t-(n+2)Kt] Y_

m=n n

M+1 112

x[1-exp(-Kt)]m-n
n+1

	

PM +1,m(0),

	

(79)

which yields for the correlation function

(at(t- t')a(t)> =exp (- iw~t' -ZKt')

°° m

	

m
xnY Yn(m+1) n exp(-nKt')[1-exp(-Kt')]m - npm+i ,m+1 (t-t') .

	

(80)
=Om=

	

()

Changing the order of summation and summing over n then gives

(at(t-t')a(t)>=exp(-i(O,t'--Kt')

	

mpm(t-t'),
m=0

which simplifies to

(at(t-t')a(t)> =exp (-i(o,t'-ZKt') n(t-t') .

	

(82)

With (18) for the average number of photons, this finally becomes

(at(t-t')a(t)>=exp(-iw,t'-+Kt')exp(-K(t-t'))n(0) .

	

(83)



This correlation function depends on the initial state only through the average
number of photons at t=0, and is therefore essentially the same for any initial state .
This implies that the spectral distribution is also the same for any initial state of the
radiation field .

9 . Quasi spectrum
Substituting (83) into (75) and carrying out the integration gives for the quasi

For t = 0 the strength is zero because J(w, 0) = 0 . For t > 0 the strength is equal to the
average number of photons in the cavity at time t . Again we set T=Kt, and then we
introduce the dimensionless frequency, relative to the cavity frequency :

A=(0-(0'
,

	

(86)

and the normalized dimensionless profile :

J(A, T) =
(0

J((O, t) .

This gives :
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(87)

J(2, T) = 2 el +H2) [21 sin (AT) + cos (AT) - exp (-i)] .

	

(88)

The spectrum is symmetric around 1=0 :

J( - .i, T) = J(A, T),

	

(89)

and its peak value at A=0 is

J(0, T) = 2[exp (-)-exp (-T)] .

	

(90)?T

This peak is maximum for T=21n 2, with a value of J(0, 21n 2)=?. Figure 1
illustrates the behaviour of the quasi spectrum for three values of T . Notice that this
spectrum becomes negative for certain frequencies . For T small the spectrum is very
broad, but it narrows with increasing T .

10 . Spectral distribution
With (84) for J(w, t) and (74) for s(o), t) the physical spectrum I(w, t) in (70) can be

obtained . The w' integral can be evaluated by contour integration, after which the t'
integral only involves simple exponentials . The result is

I((o, t) = 2y 2n(0) Re

	

exp ( - 2yt)
zK-y+i(w- (0')

x leXp{[y-zK+i(w-w,)]t}-1-exp{2y-K)t}-1i

	

(91)
y-iK+i(w-w,)

	

2y-K

spectrum

J((o, t) = n(0)

	

-ZKt)
n
Re exp [1(u?

	

,)exp ( - 2Kt) (84)(~ .)
+ iK

The strength of this spectrum is

f~ dwJ(w, t)=
~0Iii(O)

t-0'
(85)exp (-Kt), t>0-



514
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0.2

-0.2
Figure 1 . Plot of the normalized quasi spectrum j(., T) as a function of A, for A >, 0 (the

spectrum is symmetric) . Curves a, b and c correspond to T=0. 5, 21n2, and 4,
respectively . The oscillatory behaviour increases with T, and the spectrum narrows
with T .

For the strength of the physical spectrum we obtain

do) I(w,t)=2nn(0) y2 [exp(-2yt)-exp(-Kt)],

	

t>'0 .

	

(92)
K- 27

Unlike for the quasi spectrum, the strength of the physical spectrum is continuous at
t=0. Furthermore, there is no discontinuity at y=4K.

Then we express the spectrum in terms of the dimensionless parameters T and 2,
introduce the dimensionless frequency width ~ of the spectrometer :

H. F. Arnoldus

Figure 2 shows the behaviour of I(2, T) for three values of T . The physical spectrum
is, of course, positive for all 2 . For small r also the physical spectrum is very broad,
and it narrows with increasing T . The broadening is due to the cavity width K, the
spectrometer width y, and the finite detection time . For y-+O and T-+ oc the spectrum
reduces to

liml(;? T=co)=	
2

9-0

	

1+4.12

	

(96)

a Lorentzian with HWHM=1/2. Figure 3 illustrates the spectrum when the
frequency resolution of the detector is perfect (~--+0), and it is seen that the width is
still much larger than a Lorentzian of the same height, due to the finite detection
time .

Y=y/K, (93)

and normalize I(w, t) as
z

I(1,

	

I(w, t) . (94)T) = 2y2n(0)

Working out the real part then gives
t

I( (95)
,T)=(?-i)2+~

.2[exp(-2fT)+exp(-T)-2cos(2,T)exp(-(f+i)t)] .
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Figure 2. Plot of the normalized physical spectrum for J=-!, and the three curves correspond
to the same 't values as in figure 1 . The physical spectrum is also symmetric around 2-0,
and narrows with increasing t .

0.50

0.2S

1

2

2

3

3

x, 4

>. .

	

4

Figure 3 . Curve a shows the physical spectrum for perfect frequency resolution (y=0) and
t=2ln 2. Curve b is a Lorentzian with the same height and with a width equal to z,
corresponding to the physical spectrum for t-+cc . It appears that the finite detection
time gives rise to a significant broadening of the spectral distribution .

11 . Conclusions
We have studied some aspects of the temporal evolution of radiation in a zero-

temperature damped cavity . It was shown that the use of factorial moments greatly
facilitates the evaluation of the photon probability distribution, as was illustrated
with some practical examples . The photon probability distribution of the radiation
inside the cavity determines the photon count distribution which can be measured by
a detector, although in a non-trivial way . This will be shown elsewhere . With the
result for the coherences of the density operator, it was shown that a coherent state
remains a coherent state at all times, although with a diminishing value of a due to the
cavity damping . This result has been obtained before (p . 399 of [1]) by solving the
Fokker-Planck equation corresponding to the Liouville equation (4) . The frequency
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distribution of the radiation, expressed in terms of the physical spectrum, turned out
to be independent of the initial state of the radiation . The spectral distribution was
evaluated explicitly, and 'it was shown that the finite observation time strongly
broadens the spectrum .
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