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Indefinite integrals over the product of two Coulomb wave functions and a factor r - ’ - ‘, 
A=123 , , ,***, have been evaluated analytically. The results for these multipole integrals 
could be expressed again in terms of Coulomb wave functions, except for the electric 
quadrupole (A = 2) integral at zero angular momentum in both the incident and 
final channels. 

1. INTRODUCTION 

Differential cross sections for atomic or nuclear scat- 
tering can be expressed in terms of solutions of a set of 
radial wave equations. This set is usually written as a set 
of coupled-channel integral equations, which can be 
solved numerically.‘4 For heavy-ion collisions, this is a 
severe computer-time-consuming calculation, due to the 
long-range multipole Coulomb interaction. Well outside 
the nucleus it requires the evaluation of so-called Cou- 
lomb integrals, which have the form 

I$/’ = s R2 
dr 

XI(rl,W Yr(rl’,k’r) 
#+I (1.1) 

RI 

The angular momentum quantum numbers I and I’ are 
non-negative integers, and the multipole moment A has 
values /z = 1,2,... (dipole, quadrupole,... ) . The wave 
numbers k and k’ are positive, and the Sommerfeld pa- 
rameters 71 and 71’ are real (positive for heavy-ion colli- 
sions and negative for electron scattering from a positive 
ion). These parameters are related by 

r/k=@k’. (1.2) 

Explicitly, ~k=q,q+/4+?, with q1 and q2 the charges 
of the collision partners and p their reduced mass. Func- 
tions X, and Yr are real-valued Coulomb wave functions, 
and they are solutions of the Coulomb differential equa- 
tions 

$J + k2 - F - T X,( q,kr) =0, (1.3) 

$- k” - 
2$k’ I’(I’+ 1) - _ - 

r 
Ylt(f,k’r) =O. 

(1.4) 

By making the change of variables p = kr in Eq. ( 1.3), it 
follows immediately that XI only depends on k and r 

through p = kr. Similarly, Yr depends only on k’ and r 
through p’ = k’r. The function X[(q,p) is taken to be 
either the regular Coulomb wave function Ft( 7,~) or the 
irregular Coulomb wave function G1( 7,~) ,5 and similarly 
Yrt(q’,p’) is either Fr(f,p’) or GI,( f,p’). Given 1 and I’, 
this yields four possible combinations of Coulomb wave 
functions in the integrand of Eq. ( 1.1) . 

ForR,=0,R2=co,XI=F,,andYr=Fr,theCou- 
lomb integral I $’ can be evaluated analytically by con- 
tour integration. ‘*’ For a finite interval [R,,R-J on the 
positive r axis, the Coulomb integrals can be evaluated 
numerically through step-by-step integration,8’9 or with 
Gaussian quadrature.” For heavy-ion collisions at high 
energies these methods become intractable, because the 
integrand oscillates too rapidly. Furthermore, for R 1 -+ CO 
the convergence is extremely slow. In that case, more 
sophisticated integration routines have to be used.‘1*‘2 
The Coulomb wave functions with different I values, but 
the same 7~ and p, are related through recursion relations. 
This implies recursion relations between Coulomb inte- 
grals with different l,r and A values.4*‘3 Therefore, only a 
few integrals have to be calculated by direct integration 
for each set of parameters R,, R,, r], k, r~‘, and k’. 

In this paper we evaluate analytically the indefinite 
integral 

M$’ = $ dr 
s 

Xdrl,kr) YtJ ( rl’,k’r) 
#+l (1.5) 

for a large class of parameters. The Coulomb integrals 
can then be found by substituting the integration limits 
RI and R,, 

Ii/’ = ,&If;;) 2 
1’ 

(1.6) 

The factor k - ’ in Eq. ( 1.5) makes Ml;’ dimensionless, 
and it appears to reduce the number of independent pa- 
rameters by one [as does the restriction in Eq. (1.2)]. 

578 J. Math. Phys. 33 (2), February 1992 0022-2488/92/020578-06$03.00 @ 1992 American Institute of Physics 

Downloaded 11 May 2004 to 130.18.54.201. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



H. F. Arnoldus and T. F. George : Elastic Coulomb integrals 579 

II. BASIC INTEGRAL 

When we multiply Eq. (1.3) by Yr(7,f,k’r), Eq. 
( 1.4) by X,( qkr), take the difference, use Eq. ( 1.2), and 
integrate, we obtain 

(k” - kz) j- dr XL wW Yt ( rl’,k’r) 

+ (I-l’)(I+I’+ 1) dr;Xl(q,kr)Yr(q’,k’r) 

= Yr(y’,k’r) (d/dr)X,(qkr) 

- XA@r) (d/dr) YAf,k’r) + C, (2.1) 

where C is an arbitrary integration constant. For an elas- 
tic Coulomb integral we have k’=k, and with Eq. (1.2) 
we also have 7’ = r]. With k’= k, Eq. (2.1) reduces to 

Mj;)= 
x; Yr - x/Y;< 

(l-/‘)(11-I,+ 1) + C, k’ = k, a#], (2.2) 

which is an electric dipole (;1 = 1) integral. Here, all the 
Coulomb wave functions have argument (qp), and a 
prime indicates differentiation with respect to the second 
argument p. The derivatives Xl and Y;, in Eq. (2.2) can 
be expressed in terms of Coulomb wave functions (Ap- 
pendix A). However, subroutines which calculate 
F/(qp) and Gl(q,p) also provide their derivatives.‘“16 
An interesting point is that such subroutines provide an 
array of Coulomb functions for I= 0 1 2 , , ,a*-, up to a cer- 
tain I,,,. Therefore, the right-hand side of Eq. (2.2) can 
be calculated (for given 7 and p) for all I,/’ combinations 
(except I’ = 1) by a single call to such a subroutine. In this 
way, the highly unstable I,l’ recursion of Coulomb inte- 
grals can be avoided. 

Ill. DIPOLE INTEGRAL FOR I’=/ 

When we set il = 1, I=I’=O, and k’=k in the re- 
cursion relation (A7), we obtain 

Wg’=$$ + Do(q,(M;:’ + MA;‘) + C, (3.1) 

where D,( 7) is defined by Eq. (A3). With Eq. (2.2) this 
becomes 

+xoY;) + c, (3.2) 

which gives M,,,, . (‘) With Eq. (B4) this can be simplified to 

M;‘= xoyo .Do(rl> 
Q(k,.)z - 277 (x;yI - x;y,) + c* (3.3) 

Notice that the right-hand side of Eq. (3.2) is symmetric 
in X nd Y, as is Mg’, but that the right-hand side of Eq. 
(3.3) is not. When we eliminate X6 and Xi in Eq. (3.3) 
with Eqs. (Al ) and (A2), respectively, we obtain 

M& xoyo Do(v) 1 
-- 

WWz 27 ( ) 
‘?+kr (XOY, +X,Yo) 

DOW* 
+ 27 woyo+~ly,) + c, (3.4) 

which is again symmetric in X and Y. 
To find Ml/) for I#O, we set I’=& 2 = 1, and k’=k 

in Eq. (A7). This gives 

21+ 1 
~@‘IWM;? - D/(rl)M~:) ,,I+ I 

=&‘~+W’~~:)ZJ- (,+ s:I, 2j M&I 

XI, IYI 

’ (kr)’ ’ (3.5) 

where the two integrals on the right-hand side can be 
expressed in terms of Coulomb wave functions using Eq. 
(2.2). Solving Eq. (3.5) yields 

Mj;‘= -!- [M$ + i f,i, 2I+ 1 
k’=k,l= 1,2 ,... , 

n=l 
(3.6) 

in terms of M(l) * o. , given by Eq. (3.3), and the terms 

+7(2n+ 1) 
n2(n + 1) Lvn-I --Xtxz-,) 

2n + 1 
-~mL1 9 

I 

n=123 , , ,a-* . (3.7) 

With Wronski relations of the type given in Appendix B, 
f,, can be written in many different forms. 

IV. HIGHER-ORDER MULTIPOLES 

The results from Sets. II and III give Mii) for all IJ’. 
With recursion relations for the Coulomb integrals of the 
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type (A7), we can find MII. @) for ,% = 2,3,... . The follow- 
ing scheme generates these higher-order multipole inte- 
grals in a symmetric way with respect to I and /‘. For 
I’=l=O, 

xoyo 
(l-~)M~+l’=(kr)~+,+Do(?l,(MI~‘+M~~’) 

- 2qM$‘. (4.1) 

For i’=l, l#O, 

(21+A + lMf, v+ l)= _ x1fii I + DI- ~(q)CM:?,,~ (kr) + 

2q (a) + M:,f!e 13 - r M,I . (4.2) 

For 1’ < 1, 

M;;+“= DAv) 
-MI:,,, + D;;;;’ MI?,,, 21-k 1 

rl --MI;‘. 
1(1+ 1) (4.3) 

For I’ > I, 

Mj,?+“= Dr(rl> 
- MI,;)+ , + D;l;;;’ M$)- 1 21’ + 1 

rl 
- r(r + 1) 

Mji?. (4.4) 

When we set /z = 1 in Eq. (4.1) in order to find Mg) then 
Mg’ drops out. Therefore, this integral cannot be found 
by this scheme. Also in other recursion relations, which 
are not given here, M, (2) always drops out. It appears that 
this integral cannot be found by recursion, either in an 
upward or a downward scheme, which is reminiscent of 
the situation for integrals over products of Bessel 
functions.” After calculating the il = 1 integrals for all 
IJ’, Mg) has to be calculated independently. By expand- 
ing X0 and Y. in a power series and integrating term by 
term, the integral Mg’ can be expressed as an infinite 
series in r, around r = 0. Alternatively, Mg) can be ex- 
panded in an asymptotic series around r = CO. After ob- 
taining Mg)’ the above scheme yields MI/’ for all 1, I’, 
and /2. 

V. DEFINITE INTEGRALS 

Definite integrals over [R1,R2] follow from previous 
results by substituting the limits of integration. For 
R, = 0 and R, = CO, the results can be simplified with the 

help of the well-known behavior of Coulomb wave func- 
tions around r = 0 and r = CO .5 The integral over two 
regular Coulomb wave functions, 

pp = $ 
s 

om dr 
Fdrl,kr>Fdv’,k’r> 

$+l , 
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(5.1) 

converges in the upper limit for all I, I’, il, and converges 
in the lower limit under the condition I + Z’);1- 1. 
Therefore, for L = 1 the integral converges for all 1 and I’, 
and can be found with the results from Sets. II and III. 

From Eq. (2.2) and the behavior of F[(q,p) for 
p + 00, we readily find 

Pj/!'= 

sin(ol(v) - al!(q) + (I’ - lh/2) 
(l’-l)(l’+z+ 1) ’ 

k’=k, i’#l, (5.2) 

where a,(q) is the Coulomb phase shift, defined by 

q(rl> =arg r(Z+ 1 + iv). (5.3) 

From the properties of the I function we then find 

drl) - drl) = i+ 1 
v arctan ; , 

0 
I>I’. (5.4) 

From Eq. (3.3) we obtain 

Pg+&. (5.5) 

For q+O this becomes Pg’ = rr/2. From Eq. (3.7) we 
find f,(O) = 0 and f,( ~0) = q/(q2 + n2), which gives 

pjj’=- 
,I:1 I pi)?+ nil ?jZ:nZ I ’ 

k’=k, 1=1,2 ,... . (5.6) 

Figure 1 shows Pi/’ as a function of 7, for I= 0 and I = 1. 
For l’#l, but P close to I, the expressions (5.2) and (5.4) 
can be combined. This gives, for instance, 

P&Pg’= l/2 Jm, (5.7) 

which is also shown in Fig. 1. 
Integrals with X,=F[ and Yr=Gr converge for I’<1 

- 1, and integrals with XI= G, and Yr = Gr diverge for 
all I, I’, 1. Therefore, the only converging definite inte- 
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-_---e-s --yl-r 

a 
$9 

‘d -12 

b 

1 

-3 -2 -1 0 1 2 3 r) 

FIG. 1. Curves a, b, and c give the definite integral 8)) for (ZJ’) 
= (O,O), (l,l), and (O,l), respectively, as a function of 1. The curves 

are parameter-free. 

gral over [O, CO], for A = 1, which involves an irregular 
Coulomb wave function, is given by 

1 00 

s 
Fkr),WGdrl,kr) 

z 0 dr- 

COS[~~(rl) - or(rl) - (I- I,)d2) = 
(I-I’)(I+I’+l) ’ 

li,(OP) = ~&z!.J~, ,/2(P) , (6.1) 

WQP) = - &%+1/2(p). (6.2) 

In this fashion, our results for indefinite integrals go over 
into expressions for indefinite integrals over Bessel func- 
tions, some of which were derived recently by Coffey.” 
The definite integral from Eq. (5.5) reduces to 

s * 4J Jl+ 1,2(p12 1 

0 P =iip (6.3) 

which is a well-known result.‘* With ~~(0) = 0, Eqs. 
(5.2) and (5.8) become 

s a 4 JI+ 1/2(~)Jr + 1/2(p) 

0 P 

2 sin{ (I’ - 1jd23 
=7r(l’-l)(I’+I+ 1)’ ll#l, 

s m dP 
J/+ 1/2(p)Nr+ 1/2(p) 

0 P 

2 COS{ (It - I) ~123 
=n(,‘-I)(I’+Z+ 1)’ I’d- 1, 

(6.4) 

(6.5) 

respectively. 
k’=k, I’<I- 1, 

as follows from Eq. (2.2). 

(5.8) 

VI. BESSEL FUNCTIONS 

For 7’0, the regular and irregular Coulomb wave 
functions are related to Bessel functions of the first and 
the second kind, respectively, according to’ 

VII. RELATED INTEGRALS 

When we set I’ = I in Eq. (2.1), then this equation 
can be written as 

k 
s 

dr X&qkr) Y,(q’,k’r) = 
a2X;(q,kr) Yl(q’,k’r) - aXl(qkr) Yi (rl’,k’r) 

1 -a2 + ‘2 k’#k, (7.1) 

where a = k/k’. The left-hand side could be considered 
to be a Coulomb integral with A = - 1. Most interesting 
is that Eq. (7.1) gives an indefinite integral over Coulomb 
wave functions with k’#k. It also illustrates that inte- 
grals with k’fk are essentially different in form than 
integrals with k’= k: for k’- k we have 1 - a2A0, and 
this case has to be considered with a limit procedure. 

In order to find the limit k’+k of Eq. (7.1) we ex- 

k’=k. We expand Y,(y’,k’r) as 

Yl($,k’r) = Yl(qkr) -t (k’ - k) 

[ (Nllk’) Y~(q’,k’r)lksEk + B((k’ - k)2). 

(7.2) 

pand the right-hand side in a Taylor series in k’, around In the first term on the right-hand side we have used 
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vk=v’k’, which implies 17’ = n whenever k’=k. This re- 
lation was also used in the derivation of Eq. (2.1). There- 
fore, in YI( q’,k’r) both 7’ and k’r depend on k’, and care 
should be exercised in calculating a/LJk’ in Eq. (7.2). 
When we consider k’ as independent variable, then, ac- 
cording to the chain rule, we have 

& Yl(q’,k’r) =rY;(v’,k’r) -?-f- Y1($,k’r), k’ arll 
(7.3) 

where the prime on Yi indicates differentiation with re- 
spect to k’r, as before. Then we set k’ = k and 7’ = 71 in 
Eq. (7.3) and substitute the result into Eq. (7.2). For the 
expansion of Eq. (7.1), we also need Yi (q’,k’r), which is 
the derivative with respect to k’r of the right-hand side of 
Eq. (7.2). With Eq. (7.3), this yields a term with Y;‘, and 
with the differential equation (1.4) for YI, this can be 
expressed in terms of YP When we combine everything 
and take the limit k’+ k, we obtain 

k 
s 

krX;Yi - X/Y; + 

l(l+ 1) a 
-kr XT1 - 5% & Yl 

a 
+?JXfqY; +C 1 k’=k, 

where all Coulomb wave functions have the arguments 
(q,kr). In deriving Eq. (7.4) we have absorbed a term 
Xi Yl - X,Yi, the Wronskian of the differential equation, 
into the integration constant C. The result (7.4) can be 
verified by differentiation with respect to r. 

VIII. CONCLUSIONS 

The elastic Coulomb integrals for il = 1 have been 
evaluated analytically, and it was shown that higher-or- 
der multipole integrals can be obtained from the ,% = 1 
integrals by recursion. Only the electric quadrupole inte- 
gral for l=l’ = 0 could not be obtained in closed form 
(unless expressed as an infinite series). The results can be 
applied to calculate Coulomb integrals numerically with- 
out step-by-step integration and without recursion with 
respect to the quantum numbers 1 and I’. In practical 
applications, the inelastic (k’#k) integrals are also 
needed. Since the values of k’ and k are very close, at least 
for heavy ions, these k’#k integrals can be obtained by 
Taylor expansion of Yr( r]‘,k’r) around k’ = k. 
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APPENDIX A: RECURSION RELATIONS 

The derivative with respect to p of the Coulomb wave 
function X,( 77,~) can be expressed in two ways in terms of 
Coulomb wave functions:5 

Z+l 
- p XI- DI(v)XI+ 19 (Al) 

Xi= - ‘+! X~+D~-I(~)X,-~. 
( ) 1 P 

(AZ) 

Here we introduced the abbreviation 

Q(q)= dl+ (v/Z+ 1)‘. (A3) 

Either Eq. (Al) or (A2) can be solved for XI, and the 
results can be substituted into the integrand in Eq. ( 1.5). 
Elimination of Xi through integration by parts then 
yields a recursion relation between four Coulomb inte- 
grals. A similar procedure can be followed for Yr in Eq. 
( 1.5). In this fashion, we obtain four recursion relation, 
three of which are independent. They relate Coulomb 
integrals with different 1, I’, and il values, and by repeated 
application of these relations an indefinite number of 
other recursion relations can be obtained. 

In Sec. III we need 

1+1’-A+2 1 
21+3 D,(rl)Mj? - ; Wrl’)Mj:,,r + 1 

I--+A.+1 

I 

1 
- 

21+ 3 4, hW;~2,r + rl I’ 

I’--+1 

-(I+ 11(l+2) MI, I/- (A) -fp.’ I+ 1,~ + C- (-44) 

Here we introduced the notation 

a=k/k’, (A5) 

I#)= X,( qkr) Yr(q’,k’r) 
(kr)‘+’ ’ (A6) 
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Another relation is 

(I+,‘+ 1 -~)M:~+“-DD,(r])MI~,,, 

- (l/aWArl’M@+ 1 

Ml)’ =Eiji’ + c. (A7) 

The easiest way to prove this relation is to differentiate 
lijp”) from Eq (A6), eliminate Xi and Yi, with Eq. (Al), 
and then integrate the resulting expression. By differen- 
tiating H:)l,r, #,$)+ ,, etc., similar relations can be de- 
rived. 

APPENDIX B: WRONSKI RELATIONS 

The Wronskian of Fl and Gl is 

FiGI-F@i=I, 

and a similar relation is’ 

(Bl) 

FIG+ I- FI, PI= l/Q(v). 032) 

Here, all Coulomb wave functions have the same argu- 
ment (7,~). Differentiating Eq. (B2) gives 

FiGI+ I+ FIcfi+ I- Fi+ ,G/ - F/+ lGi=O. (B3) 

If we would replace either F by G or G by F, or inter- 
change F and G, this relation would still hold. Therefore, 
for arbitrary X and Y we have 

XiYr+ 1 -Xi+ lYl=Xl+ IYi -X/Y;+ 1, k’=k. 
(J34) 

A generalization of Eq. (Bl ) can be found as follows. 
Write Xi (qkr) and Yi (q’,k’r) as in Eq., (A 1 ), and cal- 
culate aXiY[ - X,Yi. With qk=$k’ and a = k/k’ we 
then obtain 

aiu;Yl- X~Yi=D/(~‘)XtY~+ I 

- a&(rl)XI+ ,Y, all k,k’. (B5) 

For k’ = k, XI= F/ and Yr= GI, this reduces to Eq. (B 1) . 
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