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Abstract . Spontaneous emission of fluorescence radiation by an atom near the
surface of a four-wave mixing phase conjugator is considered . It is shown that the
spectral photon distribution consists of two Lorentzians, which have their peaks
symmetrically located at the two sides of the pump frequency m of the nonlinear
crystal. With wo the atomic resonance, the line at Mo- coo is more than twice as
strong as the line at to o , When the phase-conjugate reflectivity exceeds unity, the
temporal photon distribution exhibits nonclassical behaviour . Then, antibunch-
ing of photons prevails, and the photon statistics are sub-Poissonian .

1 . Introduction
When two strong counterpropagating laser beams with frequency to pump a

nonlinear crystal, then this device operates as a phase conjugator (PC) for weak
incident radiation on its surface, as a result of a four-wave mixing process in the
medium. In particular, the electromagnetic vacuum field interacts with the pump
beams, resulting in a spontaneous emission of photons with frequency co in all
directions [1] . When a two-state atom with level separation hwo is located in the
vicinity of the surface of the PC, it can absorb these photons. This leads to
spontaneous excitation of the atom [2, 3] through a three-photon process, as
illustrated in figure 1 . An atom in its ground state Ig> absorbs a photon with
frequency co, and subsequently emits spontaneously a photon with frequency
26-co o . The energy-conserving diagram is completed by a second absorption of a
photon with frequency to, which leaves the atom in the excited state le> . This process
is reminiscent of the generation of the three-photon line in resonance fluorescence by
an atom in a laser field with frequency to [4] . After this excitation, the atom decays
spontaneously in the usual way, which produces a photon with frequency co o .
Continuous repetition of this cycle should lead to a steady emission of photons with
frequencies w o and 26-coo .

The above interpretation of spontaneous emission by an atom near a PC is simply
based on energy conservation . We shall show that the fluorescence spectrum consists
indeed of two lines, which are positioned at m o and 2@ - coo . Furthermore, we shall
evaluate the two-photon correlation function . The antibunching between two w0-
photons and between two 2to-co o-photons then reveals the alternating character of
the two emission mechanisms from figure 1 .
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(a)

I e>

I g>

(b)

Figure 1 . Diagram (a) corresponds to ordinary spontaneous decay and the emission of a
photon with frequency co o . Diagram (b) represents a three-photon process . Two
photons with frequency m are absorbed (double lines), and the atom goes from the
ground state to the excited state . Therefore, the fluorescent photon which is emitted in
between the two absorptions must have a frequency 2&-coo .

2 . Fluorescence
The surface of the PC is taken as the xy-plane, and the atom with dipole moment

p(t) is located on the positive z-axis at z =h . The positive-frequency part of the
fluorescence radiation field is given by [5]

in terms of the positive- and negative-frequency parts of the dipole operator, and the
Fresnel reflection coefficient P for a plane wave with frequency coo . We have
suppressed the retardation with -r/c. Equation (1) was derived by solving the
Maxwell-Heisenberg equations for a dipole near the surface of a PC . The term
proportional to p(t) (' ) is dipole radiation by an atom in empty space . This radiation
reflects at the surface, with reflection coefficient P, and this produces the second
term . Due to the phase conjugation, p(4) is reflected as p", and the factor
exp (- 2iwt) accounts for the two co photons in figure 1 (b) .

We shall assume that the radiation passes a polarizer, which transmits the
ed-component of the field (with ed •e d =1) . This component is

9(t)(+)=E(r, t)(+) ' el=cooexp
(-icooT)

M(t) ' e l,

	

(4)41a orc

E(r, t)(+ ) = .0o exp (-i(z2T)
{M(t) - ?(?' M(t))}, (1)

41reorc

in the far zone . Here
T = (h/c) cos B, (2)

and the operator M(t) is defined as

M(t) = p(t)(+'-P*° exp ( - 2icot)p(t)(-), (3)
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where we used et • P=0. A photomultiplier then counts photons from this filtered
field . With P eg =<elplg>, assumed to be real, the field becomes

(t)+ _)oexp(-
4iteorc

icoor)
(peg . ed)*{dt(t)-P*exp(-2iiot)d(t)},

	

(5)

in terms of the atomic raising operator d=le><gl and lowering operator dt=lg><el .

3 . Equation of motion
The atomic density operator p(t) obeys the Liouville equation

irP =(La -il)p,

	

pt =p,

	

Trp=1,

	

(6)

where La and F represent the free evolution and relaxation, respectively . With the
atomic Hamiltonian given by

Ha = h ) ePe + heogPg ,

	

(7)

in terms of the projectors Pe=le><eI and Pg=Ig><gI onto the excited state and
ground state, respectively, the Liouvillian L a becomes

Laa =h -' [Ha, a]=eoo[Pe, a] .

	

(8)

Here we used Pe + Pg=1 and Coo = co, - cog . Equation (8) defines the action of L a on an
arbitrary Hilbert-space operator a, rather than on the density operator p only . The
relaxation operator is [6]

respectively . The parameter A is the Einstein coefficient for spontaneous decay in
empty space .

Of particular interest is the steady-state density operator p=p(t-+00), which is
the solution of

The finite population of the excited state is due to the occurrence of the three-photon
process from figure 1 . The transient solution p(t), given an initial state p(0), can also
be easily found .

(La -iF)p=0.

	

P t = 5,

	

TrP=1 . (12)

We readily find

p = ncPe + ngP9 , (13)

in terms of the steady-state level populations

ne = 1 ~~2 ,

	

fig=1-ne . (14)

Ta=2Ae{Pea+oPe -Wad) +ZAg{Pga+aPg -2dadt}, (9)

in terms of the relaxation constants for the excited state and ground state

Ae = A( 1 +2IPI 2 ), (10 )

Ag =2AIPI2 , (11)
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4. Fluorescence spectrum
The stationary distribution of photons in a field 9(t) is in general given by

-

	

CO

J(w)= Re

	

dtexp(i(ot)<8(0)(-)9(T)(')>,

	

(15)
rz 0

where w is the photon frequency and C is an efficiency constant (depending on the
aperture of the detector, etc .) . The spectrally-unresolved intensity is

I=
,
doJ(w)=C<9(0)(-)9(0)M>,

which equals the photon counting rate .
With equation (5), the field correlation function in equation (15) acquires four

contributions,

C<-9(0)(-)(f(t)(+') = ~<d(0)d t(t)) + ~ IPI2 exp ( - 2idor)<d t(0)d(t))

-~P*exp(-2iwt)<d(0)d(t))-~P<dt(0)dt(t)), (17)

where we introduced the parameter

-

	

w0

)
'IJUeg' e d l 2 .

	

(18)
4ne0rc2

The atomic correlation functions in equation (17) can be found by transforming first
to the Schrodinger picture . This yields

<d(0)dt(t)) =Tr dt exp [-i(La-iF)t](pd),

	

(19)

and similar expressions hold for the other three correlation functions . With the
explicit forms of L a , r and p from section 3, we obtain

for T ,>O. Apparently, the last two terms on the right-hand side of equation (17)
vanish .

Combining everything gives for the fluorescence spectrum

J(CO)Re
'(A, + A )1i - coo) + g

Re
-'(A +A ) (w+ coo M)'

(23)
X

	

-g (w

	

2a

	

g -

	

-

where

Ie = Sne,

	

Ig= nglPl 2 .

	

(24)

The spectrum J(w) is a sum of two Lorentzians, both with a half-width at half-
maximum equal to 2(Ae+Ag)=2A(1 +1P1 2 ) . Similar results were found by Milonni
et al. [7] and Gaeta and Boyd [8] . The values of IPI are in the range 0 < API < oo .

Therefore, the minimum value of the linewidth is ZA, and this width grows
indefinitely with increasing (intensity) reflection IPI 2 . The first spectral line on the
right-hand side of equation (23) has a strength equal to Ie , and is located at co ( '00 .
This line is due to the decay process in figure 1 (a) . Notice that Ie is proportional to ii.,
as it should be because the initial state is le) . Similarly, the second line has a strength

<d(0)d(t)) = <dt(0)dt(t)) = 0, (20)

<d (0)d t(r)) = ne exp [ - iwot-2(Ae + A g)t], (21)

<d t (0)d (t)) = n g exp [iwot -2 (Ae + Ag )r], (22)



When we designate photons in the Ie and Ig lines as `e-photons' and `g-photons',
respectively, equation (26) expresses that there are more than twice as much g-
photons than there are e-photons . This can be understood as follows . An e-photon is
emitted during ordinary spontaneous decay, and it propagates either in the positive
or negative z-direction . Since the detector is located in the region z > 0, half the
number of e-photons can never reach the detector . They travel towards the surface of
the PC, and are subsequently annihilated in a four-wave mixing process inside the
medium. The g-photons, on the other hand, always propagate in the positive
z-direction . This explains the inequality (26), and the factor of 2 . The reason why
le has an upper limit lies in the fact that the process is ordinary spontaneous decay .
When the atom is in Ie> at a certain time, it takes a time 1 /A to decay and to emit the e-
photon. Then the atom has to be excited again during a g-photon emission before it
can emit a subsequent e-photon . This limits the emission rate to -2M (for the positive
z-direction), and the detection rate to 1 . The three-photon process, however, is
brought about by stimulated transitions, and its repetition rate can be enhanced

i
i

i
i

1
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Ig , and is positioned at w=2tw-w o . The responsible process is the three-photon
process from figure 1 (b) . The line strengths as a function of IPI 2 are shown in figure 2 .
Obviously, both Ie and Ig vanish for IPI2--*O . For large reflectivity they behave as

- e

1

	

2

	

3

	

4

	

5
IN

2

Figure 2 . Curves e and g represent the strengths Ie and Ig of the e-line and the g-line,
respectively, as a function of the reflectivity IPI 2 . We have plotted the dimensionless
quantities Ie l~ and Ig /~. The dashed lines indicate the asymptotic values (IPI 2 -+oa) .

and it always holds that

Ie/' --4,

	

Ig/~-4IPI 2 , (25)

as follows from

Ig >, 2Ie , (26)

Ig/Ie = 2 + IPI2 . (27)
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Figure 3 . Plot of the total intensity I (divided by ~) as a function of IPI 2 . The dashed line, at
I/~=-IPI 2 , is the asymptotic limit .

unlimitedly by increasing the strength of the `external field' (Co-photons) .
The spectrally unresolved emission rate is found to be

I=Ie +I -zk1PI
23+IPI2
1 +IPI 2'

and its dependence on IPI 2 is illustrated in figure 3 .

(28)

5. Photon correlations
The temporal characteristics of the fluorescent photons are most conveniently

expressed in terms of the two-photon correlation function 2(t1, t 2 ) . By definition,
12 (t 1 , t2 ) dt 1 dt 2 equals the probability for the detection of a photon in [t 1 , t1 +dt 1 ],
together with the detection of a photon in [t 2 , t 2 + dt 2], but independent of detections
at other times. The photon correlation function can be expressed in terms of the
incident field on the photomultiplier, according to [9, 10]

12(t1, t2)=C2<g(t1)(-'e(t2)(-'g(t2)(+'g(tl)(+'),

	

(29)

for t2 > t 1 . When the atom is in the steady state p, then 12(t 1 , t 2 ) depends only on t l
and t2 through t2 -t1, as can be checked by inspection. Therefore, we shall only
consider 12(0, z), with r >, 0 .

With expression (5) for 9(t) (+) , we can work out the right-hand side of equation
(29) and express 12 (0, T) in terms of atomic correlation functions . Due to the special
form of p, many of these correlation functions turn out to be zero (as in equation
(20)) . It appears that 12(0, i) consists of four terms and can be written as

12(0, .0 =E ffa(r)1a •

	

(30)
ap
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where the summation runs over a=e, g and fl=e, g. The intensities Ie and Ig are
again the intensities of the e-line and the g-line, respectively, and the functionsfqa (r)
are defined as

for an arbitrary a . From equation (30) and the definition of 12(0, T), it follows that
ffa (r)I,, equals the probability for the detection of a fl-photon at time t=i and an a-
photon at time t= 0. Therefore,fp ,(z) dr has the significance of the probability for the
detection of a /3-photon at time r after the detection of an a-photon at time zero . With
the properties

T_ 00

This relation expresses that for a long delay time 'C, the detection of the fl-photon
becomes independent of the detection of the a-photon . Combination of equations

(30) and (36) gives

12(0, 00)=EIpIc =I2 ,

	

(37)
afl

where I=Ie +Ig is the uncorrelated intensity .
The operator R a can be viewed as the emission operator for an a-photon .

Equation (35) expresses that the detection rate Ia for a-photons equals c times the
expectation value of the operator R a . The parameter ~ relates the emission rate to the
detection rate. This picture is also supported by equation (31) . Reading from right to
left, the atom is initially in state p . The action of Ra then corresponds to the emission
of the a-photon. Subsequently, the atomic state evolves over a time a with
exp (- iLT), after which the action of RB causes the emission of the #-photon . The

factor ~2 relates the two emission rates to detection rates. Finally equations (32) and
(33) show explicitly the effect of the action of an emission operator on an atomic
density operator. Action of Re on a leaves the atom in the ground state, as
represented by the projector Pg on Ig>, and generates the factor <elale> which is the
population of the excited state . This is precisely what happens in figure 1 (a) . The
probability for the emission of an e-photon is proportional to the population of le>,
since the atom must be initially in the excited state, and after the emission the atom is
in the ground state . Similarly, the action of Rg leaves the atom in le>, and the
probability for the emission of a g-photon is proportional to <glalg>, as expressed by
equation (33) . This interpretation is consistent with the processes in figure 1 (b) .

f.#(T)=l
a ~ 2TrRp exp (-iLT)Rap, (31)

with L=L . -iF . The Liouville operators R. and Rg are

Rca=dto.d=Pg<eloile>, (32)

Rga=IPI2dadt =IPI2Pe<gfrlg>, (33)

lim exp (- iLr)a= p Tr a,
T_ Go

(34)

(TrRap=la ,

which can be verified easily, we find from equation (31)

(35)

lim fsa(r)=Ip . (36)
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Of particular interest is the behaviour of f a(r) for small values of T . When
ffa(0) > II , then the emission of the a-photon enhances the probability for the
emission of the subsequent #-photon, as compared to the uncorrelated probability
for the emission of a #-photon . When ffa(0) < Is , then the a-emission reduces the
probability for a #-emission. With

Re = Rg =0,

	

(38)

as follows from equations (32) and (33), we find

fee(0) =fgg(0)=0 .

	

(39)

The relationf,,(0)=0 expresses that the probability for the emission of an e-photon,
immediately following an e-emission, is zero . This should be so, because after the
emission of the first e-photon the atom is in its ground state, and subsequent
emission of an e-photon requires that the atom is in the excited state . This necessary
lg>--*Ie) transition is brought about by a three-photon process, which takes a finite
time. A similar explanation holds f,,(0) = 0 .

For the other two correlation functions, we find

showing that the emission of an e(g)-photon enhances the probability for the
emission of a g(e)-photon. This is also easily understood . The probability for an e-
emission is proportional to the population of je> . For the uncorrelated emission, the
atom is in the steady state p, and the population ii,, is smaller than unity (and, in fact,
smaller than 1/2) . After a g-emission, however, the atom is in its excited state with
certainty . This explains equation (40), and a similar interpretation can be given to
equation (41) .

i
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Figure 4. Photon correlation function for T=0, relative to its value for r = oc, as a function of
IPJ' . For IPJ' > 1 the value of 12(0,0) is smaller than 2(0,00), which reflects
antibunching of photons .
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(AeA9)T

Figure 5 . Curves a, b and c give J 2(0 , T)/12 as a function of (A.+A5)T for IPI2=0.5, 111 2 = 1
and IPI 2 =4, respectively. For IP12 =1 we have I2(0,T)=I 2 for all T, corresponding to
perfectly random (Poisson) detection statistics .

When we do not distinguish between e-photons and g-photons, then we have to
consider 12(0,t) . For T=0 we obtain

12(0, 0) =4 C1 +x 2'

	

x=IPI2 ,

	

(42)
I2(0, 00) x 3+x

and the corresponding parameter-free curve is shown in figure 4 . For 0 < IPI 2 < 1 we
have 12(0, 0) >12(0, oo), which means that the emission of the first photon enhances
the probability for the emission of a second photon. This behaviour is called
`bunching', indicating that photons tend to stick together . Antibunching
(12(0, 0) <I2(0, oo)) occurs for IPI 2 > 1 . The function 12(0, T) is easily calculated, with
the result

12(0,T)=I +g(IPI 2 ) exp [-(A,+Ag)T],

	

(43)

where

x2 +3x+4g(x)=( 1-x)
x(x+3)2

	

(44)

This correlation function is shown in figure 5 for three values of IPI 2 .

6. Photon statistics
Photon antibunching is a pure quantum feature of radiation, since it cannot be

produced by any classical field [11] . A related phenomenon is the possibility that
quantum radiation has sub-Poissonian photon statistics . This means that the
variance a(t) 2 in the number of detected photons in [0, t] is smaller than the average
µ(t), which never occurs for classical fields . Mandel introduced the Q-factor [12]

Q(t)=a(t)2-µ(t)

	

(45)
µ(t)

	 '
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which is negative for sub-Poissonian photon statistics . Negative values of Q(t) have
been found experimentally in resonance fluorescence [13, 14] . For stationary
radiation the average is µ(t)=It, with I the intensity . The variance can be expressed
in 12(0, t), and the Q-factor is

f
`

Q(t)=It

	

dT{(t-T)I 2(0, T)-TI2 } .

	

(46)
0

With equation (43) we find for the present problem

Q(t) =	 21g(IPI22 {(Ae+AB)t-1+exP[-(Ae+AB)t]} .

	

(47)(Ae +AB) t

The sign of Q(t) is given by the sign ofg(IPI 2 ) . Therefore, for IPJ' > 1 we have Q(t) < 0
for all t, and the statistics are sub-Poissonian . For small t we find

Q(t)=Itg(IPI 2),

	

t-+0,

	

(48)

showing that Q(t) increases or decreases linearly with t . For t--+oo, Q(t) reaches the
stationary value

Q=1iim Q(t)= Ag(+A) •

	

(49)
B

Recalling that I, A e and AB depend on IPJ', we can write for the IPI 2 dependence of Q

_ 1_X x2 +3x+4
A (1 + x) 2

	

x+3

	

x=IPI2_

	

(50)

The factor ~JA is an efficiency factor. We see that Q= (~JA)(4/3) for IPI 2 -+0, Q =0 for
IPI 2 =1, and Q-->-(~/A) for IPI 2 --+o0 . In view of equation (45), the value of Q(t)
is limited by Q(t) >, -1 for any field . The lower limit Q(t) = -1 corresponds to
v(t) 2 =0, which is the ultimate sub-Poissonian limit. By increasing the phase-
conjugate reflectivity IPJ', this lower limit can be approached arbitrarily closely,
apart from the efficiency factor c/A . The dependence of QA/~ on IPI 2 is shown in
figure 6 .

IPI2

Figure 6 . Plot of the normalized !o-factor, QA/~, as a function ofIPJ'.For IPI 2 =1 we have Q
= 0, which reflects uncorrelated photon statistics . The dashed line at QA/~ _ - I is the
asymptotic limit .
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7. Conclusions
We have studied the spectral and temporal properties of fluorescence radiation,

which is emitted by an atom near the surface of a PC . The fluorescence spectrum was
found to be the sum of two Lorentzians, and the positions of the lines appeared to be
consistent with the two relaxation processes shown in figure 1 . Three-photon
processes contribute more than twice as much to the fluorescence yield compared
with ordinary spontaneous decay . From the result for the two-photon correlation
function 12(0, T), it followed that the fluorescent photons exhibit antibunching
when the reflectivity of the PC exceeds unity. Under the same criterion, the photon
statistics are sub-Poissonian .
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