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Abstract . Reflection of travelling and evanescent plane waves by a four-wave
mixing phase-conjugator is studied in detail . No restrictions are imposed on the
nonlinear interaction strength, the angle of incidence or the frequency mismatch
between the pump-beams and the incoming waves . We only assume that the
incident field is weak compared to the pump fields, which justifies a classical field
description of the pumps . The wave-vectors, amplitudes and phases for the
various waves are evaluated, without the slowly-varying amplitude approxi-
mation . Familiar phase-matching resonances for certain values of the interaction
length are recovered, and in addition strong resonances are found if the angle of
incidence is finite and the incident light is not in perfect resonance with the
pumps. The latter resonances appear at the transitions from a travelling to an
evanescent wave. The significance of finite angles of incidence and evanescent
waves for spectroscopic applications is pointed out .

1 . Introduction
Among the many ways [1-3] of generating a phase-conjugated signal with respect

to a reference signal, the technique of four-wave mixing is the most promising from
an experimental point of view [4-9] . A nonlinear crystal (like BaTiO 3 ) or liquid
(typically CS 2 ) is irradiated by two counter-propagating strong laser beams (the
pumps) with intensity I. A third incident (weak) field then couples to the pump fields
through the third-order susceptibility X(3), and the result is an electric polarization of
the medium, which is proportional to X 1311 and the electric field component of the
weak field . This induced polarization then emits radiation which propagates out of
the crystal . Under certain conditions this generated fourth wave is the phase-
conjugated, or time-reversed, replica of the incident field . Production of phase-
conjugated radiation is of great practical importance in optical engineering, because
it provides a method for correction of wavefront distortions .

In most applications the weak field is a nearly monochromatic plane wave with
well defined polarization, the angle of incidence on the crystal is almost zero (usually
a few degrees), and the coupling constant y oc X131I is very small. For this
configuration the generation of phase-conjugated waves is well understood [10-19] .
There are, however, conceivable applications in which these conditions do not hold .

0950-0340/89 $3 . 00 © 1989 Taylor & Francis Ltd



32

	

H. F. Arnoldus and T. F. George

It has been predicted, for instance, that the lifetime of an atom in the neighbourhood
of a phase conjugator (PC) is infinite, as a result of the fact that an ideal PC focuses
the emitted fluorescence exactly back on the atom [20, 21]. Consequently, the
spectroscopic linewidth of the atomic transition under consideration would be zero,
which can have a great impact on frequency standards . These predictions were
derived under the assumption of perfect phase-conjugation . Since phase-
conjugation is equivalent to time-reversal, it is obvious that ideal PCs cannot exist
(owing to violation of causality) . Nevertheless, it can be anticipated that realistic PCs
may possibly be used to manipulate linewidths over a large range (in contrast to the
situation of atoms near a metal surface, where the change in lifetime is at best a factor
of two) .

Emitted dipole radiation (fluorescence) by an atom in the vicinity of a PC has
plane-wave components, which are incident on the surface at every angle of
incidence . Besides that, a dipole field has evanescent components (exponentially-
decaying waves)t, and the radiation is not monochromatic . Furthermore, for
contemporary high-power lasers the interaction parameter yocl is not necessarily
small. In this paper, we present a general treatment of the scattering of travelling and
evanescent waves by a four-wave mixing PC, without restrictions on the interaction
strength, frequency, polarization or angle of incidence .

2 . The model
A nonlinear transparent crystal (X (3) 0, ? #3)=0) occupies the region

0 > z > -J, A > 0, in an xyz Cartesian coordinate frame, and the regions z > 0 and
z < -A are empty space . Two counter-propagating pump-beams with intensity I
and frequency w (called the setting frequency of the PC) illuminate the medium .
Then the complex-valued coupling parameter is given by yocX(3)I. We shall assume
that I is constant (no depletion of pumps) and that X(3) is frequency independent .
This means that the incident probe field must have a bandwidth around w which is
smaller than the frequency width of X (3) . In this fashion we can avoid complicated
notations, but it is straightforward to retain the frequency dependence of y if
necessary [22] . Furthermore, we assume that the tensorial nature of X(3) is irrelevant,
which can always be managed by a proper choice of geometry .

The radiation field shall be represented by its electric and magnetic components,
E(r, t) and B(r, t) respectively, and charges and currents by a polarization density
P(r, t) . It is advantageous to adopt a Fourier transform with respect to time,

E(r, w)= J
00

exp (icot)E(r, t) dt, co real,
- 00

and since E(r, t) is real we have

(1)

E(r, -co) = t(r, (o)* .

	

(2)

t According to Fourier's theorem, every field can be expanded in terms of travelling plane
waves. Maxwell's equations, however, impose the restriction that the field must be transverse .
Even when a radiation field is transverse, its Fourier expansion can acquire longitudinal
components which do not obey Maxwell's equations individually . This complication can be
avoided by allowing the field to consist of travelling and evanescent transverse plane waves .
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Similar notations apply to B(r, t) and P(r, t) . In the Fourier domain, Maxwell's
equations read

v-(E+P/e0)=0,

	

v . 0=0,

v X E=i(ob,

	

v XA=~(t+A/EO),
c

(3)

which should hold for all r and w .
In the regions z > 0 and z < - .J the polarization density 0 is zero . Inside the

nonlinear medium P(r, w) is proportional to the electric field at a different frequency .
Explicitly [23], this has the form

ft(r,w)= Je0y
4(r,w - 2w), w>0,

	

(4)
l oYt(r, 2w + (o), w<0,

where the field t does not include the two pump fields . These are parametrically
accounted for by yccl . On the surfaces z=0 and z=-d, Maxwell's equations (3)
imply the usual boundary conditions .

3 . Dispersion relation
Before we can solve the scattering problem for travelling and evanescent waves

by this PC, we have to establish the fundamental plane-wave solutions which are
supported by the medium . To this end we first notice that the polarization density
P(r, w) from equation (4) couples positive and negative frequencies . If we denote by
wl x w > 0 a fixed positive frequency, then 0(r,(o,) is determined by the electric field
component with frequency

W 2 =w1-2w. (5)

The polarization at this negative frequency w 2 : -w is then proportional to the
electric field at 2w+w 2 =co t , according to equation (4) . Hence the nonlinear
interaction couples positive and negative frequencies w l and w2 in pairs . Conse-
quently, for a fixed w l , Maxwell's equations (3) constitute essentially a set of eight
equations, which have to be solved simultaneously .

The third Maxwell equation can be written as

A(r, w)=-1 V x E(r, w),

	

(6)
w

and therefore A is known as soon as we have found t, both for co, and w 2 . Then,
V • 19=0 is automatically satisfied. Furthermore, we notice that A is proportional to
E, although at a different frequency, and so the first Maxwell equation is certainly
obeyed if

V - E(r, (o) =0,

	

(7)

for every w . Next we substitute equations (4) and (6) into the fourth Maxwell
equation, which yields the set of coupled-wave equations

for the electric field . Equations (7)-(9) are the basic relations for a PC . The first one

[V2 +(wl/c)2]E(r, wl)= -Y*(wl/c)2E(r, (0 2), (8)

[V 2 + (w2/c)2]E(r, (02) = - y(w2/c) 2t(r, (ol), (9)
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states that the fields are transverse, and (8) and (9) show that a wave with a positive
frequency w 1 couples to a wave with a negative frequency w 2 , and vice versa .
Therefore, a positive-frequency field generates a negative-frequency field, which is
the essence of a phase conjugator .

As a plane-wave solution, we try

Equation (12) states that plane waves in a PC are transverse, and the last equality in
equation (13) gives an equation for the amplitude ratio 11a between the W2 and the (t),
component. Because equation (13) is quadratic in h a , it admits two solutions . For
reasons which will become clear in due course, we choose the solution

With this convention we have 11a ->0, 11b_*0 if y-*0, and the a and b solutions become
(uncoupled) w 1 and w2 waves respectively in this limit . For y#0 the parameters 11a
and 11b determine the relative strengths of the coupled waves with the complementary
frequency, which are excited by the four-wave mixing process . Furthermore, we
notice that the coupled waves Ca (r, w 1 ) and Ea(r, (02) have the same wave-vector k a ,
which implies a perfect phase matching between these two waves at different
frequencies . The same holds for the b solution .

11a ={p2- 1 -6[(p2- 1) 2 +4y 2p 2 ] 1/2 }/ 2y* , (15)
with

(16)y=yo exp (i4), y o > 0, ca real,
and

6=sgn(Co-w1 )=sgn(p-1) . (17)

The solution corresponding to the second root for 1 . will be written as

(18)Cb(r, w1) =11bEb exp (ikb • r),
Eb(r, w 2 ) = E b exp (ikb • r), (19)

which obeys Maxwell's equations if

(20)kb • E6 =0,

kb =k 2p2 ( 1 +Y 11b)=k 2(1 +Y* /116) • (21)
Of the two possible solutions for 11b we have to take

(22)116={1 - p 2+ 5 [(p2-1 ) 2 + 4y 2p 2 ] 1f2 }/ 2yp2 .

Ca (r, (9 1 ) = Ea exp (ik a • r), (10)

k(r, w2)=r1 aEa exp (ika • r) . (11)

Then equations (7)-(9) give

ka • Ea = 0, (12)

ka =k2(l +Y*11a)=k2p2 (1 +y/11a), (13)

where we have introduced the wavenumber

(14)

k=w 1/c,
and the dimensionless detuning parameter

p = 2w/w 1 -1 .
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Now we can substitute the expressions for fla and ?b into equations (13) and (21),
which gives the wavenumbers ka and kb (up to a minus sign) . Notations can be
simplified considerably by the introduction of the quantity

E=i (p2+ 1 -b[(p 2 -1)2 +4Yop2] 1 / 2
} .

Then we find in terms of e

k 2 =k2E,

	

kn-k 2(p2 + 1- E),

11a = (E - 1)IY* ,

	

nb=(1 - E)IYP2 .

If the medium were an ordinary dielectric, we would also have ka =k 2E, but with E as
the dielectric constant . An important difference is that in equation (23) E depends
explicitly on the frequency w l through the parameter p . This frequency dependence
is a genuine geometrical effect as it follows from the mechanism of four-wave mixing
(rather than from a frequency dependence of X(3), which we have suppressed) .
Therefore, equation (24) gives the fundamental relations for the two branches of the
dispersion curve for a four-wave mixing PC . This universal dispersion relation is
plotted in figure 1 . We remark that s, as defined in equation (23) is real (possibly
negative). If the frequency dependence of X,(3) was retained ,e could then also have an
imaginary part . Furthermore, we notice that r is discontinuous across the resonance
w 1 =co, or p=1, due to the appearance of S .

2

NY
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0
I
I

0	 I	I
0 . 75
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I •2 5
W I /w

Figure 1 . Dispersion relation for a phase conjugator . Curves a and b are ka/k 2 and kb/k2
respectively, as a function of w 1/to, and the coupling parameter is y o =02. The
discontinuous behaviour around w1 =t) comes from the choice of the roots in the
definition of rl a and l7b .

(23)

(24)

(25)
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4 . Incident field
A given external field illuminates the surface z = 0 of the PC. Since almost every

field can be expanded in plane waves, and since Maxwell's equations for this PC are
linear (even though the four-wave mixing process is not), it suffices to consider an
incident field of the form

k,, c(r ) w 1 )= E;,,, exp (ik • r),

	

(26)

defined in the region z > 0 . The corresponding A field follows from equation (6) . In
equation (26) the polarization and amplitude E ;,,,, and the wave-vector k are
arbitrary, with the restrictions that

k' E;,,e =0,

	

k2 =k' k=(wl/c) 2 ,

	

(27)

according to Maxwell's equations in z>0.
With the unit vector e Z as the normal to the surface, we can decompose k into its

parallel and perpendicular components with respect to the xy plane . We write

k= k ll +kze z ,

	

(28)

and similarly for any other vector quantity . Combining this with equation (27) gives

kZ=k2 -k l .

	

(29)

The quantity k2 is a given positive number for a fixed w 1 , but the components k11 and
kZeZ of k can be anything, as long as restriction (29) is satisfied. For most practical
cases it is sufficient to consider only real-valued vectors k 11 , and this will be assumed
from now on . We shall regard the quantities k = w l /c > 0 and k II as given, but
arbitrary . Then, the right-hand side of equation (29) is a given real number, and
there are two possible solutions for k 2 . Because the external field is generated by
sources in the region z>0, we have to choose the causal solution, which is

-(k2-kjl)1 2,

	

if k>k ll ,
k
Z = - i(k2 -k2 ) 112

	

if k<k

	

(30)
II

	

II

where k 11 = ( kll * kll
)1/2 >0. For k > k ll , kZ is negative and real, corresponding to an

incident travelling plane wave from the region z>0. In the case k < k II , kz is
imaginary, and the root is chosen in such a way that the wave decays exponentially to
zero in amplitude in the negative z direction . This evanescent wave decays in the
direction perpendicular to the surface, and travels along the surface in the klldirection .

5 . Fields
The incident field E;,,c (r, w 1 ) induces a nonlinear polarization in the medium,

which in turn emits radiation according to the coupled-wave equations (8) and (9) .
This radiation travels out of the crystal and gives rise to reflected and transmitted
waves by the layer . It will turn out that the fields everywhere in space can be
expressed by plane travelling or evanescent waves, depending on k and k

11

. Every
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wave a will therefore have a spatial dependence of EQ exp (ik a • r) . Transversality then
requires

kQ •E,,=0,

	

(31)

for every wave . Since the waves must be matched across the planes z = 0 and z= -d
with the aid of boundary conditions which should hold for all r in z = 0 and z = -d,
all wave-vectors must have the same parallel component. Therefore, we have

k,,=k p +k a, Z e z7

	

(32)

and only ka , Z remains to be determined . On the other hand, the dispersion relations in
vacuum and in the PC fix the value of kQ =k 1 +ka, Z . Consequently, the only freedom
we have left is the choice of the sign of k, z . In the regions z > 0 and z < -,d this sign is
determined by the requirement that the waves must emanate from the PC, in the
same way as we found the sign of kz . For the fields inside the PC there is no a priori
way to fix the signs of the z components of the wave-vectors, and therefore we have to
retain all possible combinations . We shall only write down the expressions for the
electric fields . Then, the magnetic fields can be found from equation (6) .

5 .1 . Region z > 0
From the arguments above it follows that the most general plane-wave solution in

the region z>0 is given by

E(r, co l ) = E;,,. exp (ik • r) + Er exp (ik r • r),

	

(33)

C(r, co2) = EPC exp (ik p . • r) .

	

(34)

At frequency co l there is only one other possible wave, which is the specularly-
reflected r-wave with

kr =k,

	

kr z=- kz .

	

(35)

Although this field resembles that of a wave reflected by an ordinary dielectric, it is
here entirely generated by the four-wave mixing process (we have set X (1) =0). At cot
we have the phase-conjugated pc-wave with

kPC = - co t/c>0,

	

(36)

kp c z = kp2e -kj~ =k 2p 2 -k2
11 .

	

(37)

Since w2 is negative, the pc-wave travels in the -k PC direction if k pc , z is real. In the
case of an evanescent pc-wave, the wave should die out in the positive z direction .
Consequently, the root should be taken as

(k2p 2 -kj~) 112 , if kp>kll,

	

)kPCz=

	

(38
i(k2

11

-k2p2)1/2,

	

if kp<k~~ .

Then it remains to determine E r and E pc .

5.2. Region 0>z> -0
Inside the PC the fields are combinations of a and b solutions, and we have

E(r, ow l ) = EQ exp (ikQ • r) + EQ exp (ika • r) + r/ bEb exp (ikb . r) +t16E6 exp (ikb . r),

(39)
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C(r, (02) _ h1aEa exp (ika • r) +rJ aEa exp (ika • r) + Eb exp (ika • r) + Eb exp (ik1 • r) .

(40)

The values of ka and kb are given in equation (24) and for the z components of the
wave-vectors we write

where the wave-vector of the transmitted (t) wave is the same as the incident wave-
vector. Furthermore, there is possibly a nonlinear (nl) wave of frequency w 2i which
has

k,,,,Z= -kPC , Z .

	

(49)

Figure 2 illustrates the various occurring waves .

6. Polarization and Fresnel coefficients
According to equation (32) every (complex-valued) wave-vector k a lies in the

plane of incidence, spanned by the (real-valued) vectors k ll and eZ . The amplitude-
polarization vectors Ea can be decomposed into a surface (s) polarized and a plane (p)
polarized component, which are perpendicular to and lie in the plane of incidence,
respectively . Since Ea is restricted by ka • Ea =0, the only ambiguity in a decompo-
sition along unit s- and p polarization vectors is the choice of the phase of the unit
vectors . We take

and it is easy to check that e as , eaP and ka/ka constitute an orthonormal set of unit

eas= 1-(k ll x es),
k ll

(50)

1_
eaP k ka (ka,ZkI, - kpeZ) ,

II
(51)

kaZ = ± k1 , (41)

kb Z = ± k2 , (42)
with

(43)k2 =k2 -k2 ,

k2=ke -k2 . (44)

The roots are taken (arbitrarily)
k

1
(45)

as
- (k a _kjl)1/2,

	

if ka >k l ,

k 2

-1 k 2 -k2 ) 1/2 , i; k2 <k2( 11

	

a if a

	

II,

-(kb-kjl ) 1 J 2 , if kb>k2 ,

i(k2-kb) 1 / 2

	

if kb <k
211

.
(46)

5.3. Regionz<-A
The only waves which travel or die out in the negative z direction are

(47)E(r, (9 1)=E, exp (ik • r),

C(r, (o2) = E„, exp (ik, • r), (48)
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IIIII	 1 1 1 1 1 Z_ '~'

Figure 2 . Schematic representation of the various waves from section 5 . The arrows indicate
the wave-vectors, which all have the same parallel component k 11 . Their perpendicular
components are approximately the same, apart from the sign . The inc-,t- and r waves are
w 1 waves and they travel in the direction of the wave-vector . The pc- and nl waves have
a frequency cwt < 0, and therefore they travel in the direction opposite to the wave-
vector. This is indicated by a circle on the arrows . Inside the PC we have four different
wave-vectors and every vector corresponds to two fields according to equations (39) and
(40) . The a+ and a- fields are essentially w 1 -fields, and the b+ and b- fields are
negative-frequency waves . For yO0 these principle waves couple to a field with the
same wave-vector but with a frequency of opposite sign . These fields are indicated by
broken arrows . The wave which couples to the principle wave always propagates in the
opposite direction .

vectors for every a . Notice that eas is defined as independent of a and is real . The
p-polarization vector can be complex . For all waves only the value of ka (real) is
prescribed by the dispersion relation, and we take the square root as

ka=
(ka) 1 / 2 ,

	

if ka > 0,

t i(- ka)1 /2 ,

	

if ka < 0 .

E,,,.,=0, s waves,

Ea Z = - k
llkaE p

waves .

1~

It can be proven that every wave is an s(p) wave if the incident wave is an s(p) wave .
Therefore, we can distinguish between the two cases and write

E a =EQe,,, a=s or p,

	

(53)

for every a . The simplification lies in the following relations for the z components
of E,,

I I I I I Z-0

(52)

(54)
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Then the Fresnel coefficients X,,( Yj for s(p) waves are defined as the ratio of E,, and
or equivalently the amplitudes E,, are written as

E,, = X.E;,,Ce,,s, for s waves,
E,= Y.Ei„.e,p , for p waves .

The amplitude E11, of the incident field is a given quantity, and the unit polarization
vectors e,, Q are geometrically determined . Therefore, knowledge of X., and Y,,, for
every wave a, determines the scattering of any wave by the PC .

7 . Solution
Maxwell's equations (3) state that at the boundaries z=0 and z= -A the

tangential component of E, the normal component of E+P/so , and the B field must
be continuous, both for w 1 and w 2 . In matching the fields in the three regions across
the boundaries, we can determine all the E,, values, and the results can be expressed in
terms of the Fresnel coefficients X, and Y, for s- and p waves respectively . It is
convenient to express the Fresnel coefficients in dimensionless quantities, rather
than in wavenumbers . Besides p and a we introduce

u= -kz /k,

	

(56)

which allows us to write for the parallel components

k'l =k2(1-u2) .

	

(57)

For a travelling incident wave u is real, restricted by 0 6 u <, 1, and u equals the cosine
of the angle of incidence . If the incident wave is evanescent, then u is positive
imaginary. Furthermore, we define dimensionless wavenumbers by

(55)

Owing to boundary conditions at z= -A, phase factors appear which can be
expressed as

0 1 =-2irdm 1i

	

00 2 =2irdm 2 ,l
03 = 2T[du,

	

04 = 21tdm p .

For travelling waves these phases are real, and for evanescent waves they are positive
imaginary .

m. =k 8 /k, a=a, b,1, 2, (58)

MP =kp,2/k, (59)

and the layer thickness d in units of a wavelength of the incident radiation

(60)d=kA/2zt .
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After laborious computations, it follows that the Fresnel coefficients can be
expressed in terms of eight dimensionless parameters x ;, y1 , i = 1, . . . , 4 as follows

Xa+ _- xl ,

	

Xa =xz,

Xn
+ _
- xa,

	

Xn = xa>

Xr =x1+x2+ll b(x3+x4 ) - 1,

Xp = Y1 a(x 1 +x2)+x3 +x4 ,

XX=exp (_43){X1 exp (i ' 1)+x2 exp (-ilkl)+11b[x3 exP ( - '02)
+x4 exp (iti2 )]},

Xni = eXP (- i04){na[Xl exp (iik 1 ) + x2 exp (- iO l)] + x3 exp ( - ' 02)

+xa exp (io2)},
Ya =maYl,

Yb = mby3,

Ya = maY2,

Yb = mbY4,

Yr= ma(Y1 +Y2)+lltmn(Y3 +Ya)- 1,

Yp
C'

= P -1
[
rlama(Y1 +Y2)

+
b (Y3 +Y4)],

Y1 = eXP (- i03){ma[y1 exp (1J 1) +Y2 exP ( - iO1)] + hbmb{Y3 exP (- iY' 2)

+Ya eXP (iO2)]},

Yn1=p -1 exP (-loa){rlama[y1 exp (1i1)+Y2 exp ( - 1o1)]

+mb LY3 eXP ( - '02) +Y4 exP (1i2)]} .

	

(62)

Here, the parameters x; and y; for s and p-waves respectively are solutions of the
linear sets .

P
x2

x3

xa

2u

0

0
,

where the matrices P and Q are given by

Q

Y1

Y2

Y3

Ya

2u2

0

0

0

,

(63)
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The sets of equations from equation (63) can readily be solved analytically, but the
resulting expressions are lengthy and, in turn, not transparent . Numerically, one
solves the sets directly, rather than inverting the matrices P and Q .

8. Special case
Although the results of the previous section apply to any situation, in many

practical cases the solution can be simplified considerably because of restrictions on
the order of magnitude of various parameters . It is elucidating to work out a special
limit in order to reveal the fundamental structure of the Fresnel coefficients . If the
incident field is a visible narrow-bandwidth laser and exactly on resonance with co,
then the relative detuning is of the order of Ip-11 :10 -s . Furthermore, the
nonlinear coupling parameter y o has an order of magnitude of 10 -s-10 -6 , even for
very strong c.w. pump fields . In this section we consider the limit y o-+0 (weak
interaction) and p-1 (resonance), which implies y o << lu l l and Ip -11 << Iu 2 1 . First we
expand the matrices P and Q up to leading order in p -1 and y o , after that we take the
limits. For this situation the amplitude factors are related by

and Ra equals

1lb= - na, (66)

1-p

	

1- p)2]1,2
rla = -exp GO)

Yo
	 +6 1

+C Yo

	

},

	

(67)

which is not necessarily a small parameter. Equation (66) expresses that the coupling
strength between the two fields of the a solution equals the coupling strength
between the two components of the b solution . This must be so in this limit, since
p : 1, y->0 implies kq xkb and consequently the two branches of the dispersion
relation coincide .

8.1 . Travelling waves
For 0 < u < 1 the incident field is a travelling wave . In lowest order we find for the

relative wavenumbers

mp=m1=m2=-u,

	

Ma=mb =1 .

	

(68)

and the Fresnel coefficients are found to be

Xa = Ya =Xb = Yb =Xr= Yr=Xai= Y,1=0,

	

(69)

Xa+ Y
__ + __	1	
Y.+

1 +Ifal 2 exp [i(yi1+~2)]'

+

	

+	-J7a

Xb

	

Yb
exp[ - i(j1+Y'2)]+1 11x1 2

'

X,= Y,=exp [-42+'a)]	 1 +I11a12	
2~exp [ - i(i1 +p2)]+I11a1

exp[ - i(i1+i2)] - 1+Irla l2{1 - exp[i(W1+'2)]}

Xpa Ypa _-na {1+111 .1 2 exp[1('Y1+02)]}{eXp[ - i(9'1+02)]+IfaI 2 }
(70)
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This limit has several remarkable features . First, the Fresnel coefficients for s and p
waves are identical, and therefore the scattering process is polarization independent .
Second, the specularly-reflected wave disappears, and hence the field which is
reflected back into the region z > 0 consists entirely of the phase-conjugated signal
with respect to the incident beam (times a factor) . Third, the structure of Xp, is
completely determined by phase factors, in the combination

01+02= -2nd(m 1-m 2 ) .

	

(71)
According to equation (68), we have m1-m2 = 0 in first-order in p-1 and y o , which
would make 0 1 + 02 = 0 and thereby XP, = 0 . However, m1 -m2 is multiplied by the
relative layer thickness d. For an interaction region of a few centimetres, we have
d : 10 5 and W 1 + 020 0, even in lowest order . Since m 1 and m 2 are the relative wave-
numbers (of the z components) of the a and b waves in the PC respectively, we
conclude that the phase-conjugated signal is brought about by constructive
interference between the a and b modes of the PC .

If the incident field is in very close resonance with the setting Co of the PC, then
we have

which is the famous resonance condition [3] .
Even if lp -1 is not much smaller than yo , the denominator of XP,, equation (70),

has still a resonance at the solution of

exp 1401 +'Y 2)] = - 1,

which leads again to condition (74) . With 0 as the angle of incidence, we then find that
the PC is resonant for later thickness

1

	

cos 0d= n+ -)

	

n=0, 1, 2, . . . .

	

(76)(

	

2
[( 1 -p) 2+ y0] 1/2

At the resonance the value of XP, is found to be

xPCpo 1 -
111x1 2 '

(75)

(77)

and in between resonances, where exp [i(i 1 + c/2)] =1, we have XP , = 0. This
resonance behaviour is illustrated in figure 3 .

An important conclusion is that when a PC is resonant for radiation under normal
incidence (0 = 0), it is off-resonant for radiation which illuminates the surface under a
finite angle. In spectroscopic applications, where the incident field is dipole
radiation, all plane-wave components strike the PC at a different angle, and
therefore, this device cannot operate as a perfect phase conjugator for the entire field .

11a -6 exp (i4),

	

111.1 =1 . (72)
(More precisely: if Ip-1I<<yo ) . Under this condition the XP, reduces to

Xpa =-itla tan[z~1+02)], (73)
and the PC reflectivity becomes infinite for

0 1 +q/2 =(2n+1)n, n integer, (74)
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4

d

Figure 3 . Absolute value of the reflection coefficient for the pc wave with s-polarization for
u=1 and y=0.05, as a function of the layer thickness d. Curves a, b, c and d correspond
to w 1 /w=1 . 006, 1 .01, 1 .05 and 1 .1, respectively . The peaks result from interference
between a- and b waves, and the positions of the peaks are given by equation (76) . For
larger detunings the peaks shift and become less pronounced, in agreement with
equation (77) . In the limit co t =to curve a, turns into an extremely sharp resonance .

8 .2. Evanescent waves
For an evanescent incident wave we have

mp = -m1=m 2 =u,

	

(78)

and the Fresnel coefficients become

X

Xa =X6 =Xr=Xpc=O,

+=	1

	

_ -r1 a
a

	

1+111 .12'

	

Xb

	

1+lq a l21

X`
ep+

1 11'1 3)
[exp(1~1) +1 11a1 2 exp(GO2)],

Xnl
-exp(-i~4) na [exp(ij1) -exp(79)1 +

111 .1

and the same expressions hold for p waves . We notice that there is no reflection at all
back into the region z > 0 . Furthermore, if the layer thickness d is much larger than
the penetration depth 1/lul of the waves, then the fields in z< -A also vanish . We
conclude that there is hardly any reflection of evanescent waves in the limit p-+ 1,
y,-+O . In figure 4 we compare the Fresnel coefficients IX pcl for travelling and
evanescent waves. For evanescent waves the nonlinear interaction region is limited to
the penetration depth, which is a few optical wavelengths . The PC cannot generate
much radiation in such a thin layer, which explains the very small values of Xr and
Xpc in this case .
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Figure 4 . Reflectivity for the phase-conjugated wave as a function of d . The parameters are
y o =0.05 and w t /w=1 .01 . Plot a corresponds to a travelling incident wave (u=0 . 25), and
curve b represents an evanescent field (u=0-25i) . The sharp resonances in curve a
originate again from phase interference, and their position is given by equation (76) . It is
seen that the reflectivity for an evanescent wave is almost negligible, as compared to a
travelling wave .

9 . Resonances
In the previous section we found that IX P ,.I acquires extreme values if the

dimensionless layer thickness d is related to the angle of incidence 0, the detuning p
and the coupling parameter y o according to equation (76) . These resonances appear
due to perfect phase matching of the a- and b waves in the PC, as expressed by
equation (75) . For Ip-1I < y o , we have I naL =1 and then IXP,.I becomes infinite, as
follows from equation (77) . Beside these interference resonances, a PC has a different
kind of resonances which appear if we allow the angle of incidence to be non-zero and
the waves to become evanescent . If we solve equation (63) for the eight parameters
x t , . . , X4 , y t , . . . , y 4 , then the general expression for every parameter is a 3 x 3
determinant (because of the zeros on the right-hand sides), divided by det (P) or
det (Q) . Resonances then occur for values of p, u, yo and d at which det (P) and det (Q)
is very small . For instance, in the limit of section 8 we have

for evanescent waves. Then it is obvious that the right-hand side of equation (80) has
a minimum if the phase-matching condition (75) holds, whereas the right-hand side
of equation (81) has no pronounced minima .

Without proof we state that the second kind of resonances can appear there where
one of the generated waves turns from a travelling wave into an evanescent wave, or
equivalently, at the branch points of the square roots which define the z components

det(P) = (2u)4[exp( - 02)+InaI2 exP(i~,)][eXP( - tit)+It1a1 2 exP(i i2)], (80)
for travelling waves, and

det (P) = (2u) 4(1 + InaI2)2 exp [- i(ot + 02)], (81)
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of the wave-vectors (section 5) . From the expressions of section 5 in combination
with relation (57) for k'l , we find that the various waves are evanescent under
condition

r wave : u2 < 0,
pc wave : u2 < 1- p2 ,

(82)
a waves: u 2 <1 -E,

b waves : u 2 < c- p 2 .

Then the resonances are located at u 2 = 0, u 2 =1-p 2 , u 2 =1-e and u2 = c-p 2 . Most
obvious is the case u2 = 0, or u=0, for which det P must be small according to
equations (80) and (81) . We notice that the right-hand sides of (82) depend only on yo
and p, and not on u . For fixed y o and u, the resonances appear at a certain detuning p
between co, of the incident field and the PC setting frequency co . For yo and pp fixed,
we can regard the resonance conditions as an equation for u (angle of incidence or
inverse penetration depth) at which IXpJ and the other Fresnel coefficients have
sharp peaks. We notice that the positions of the resonances are independent of d, in
contrast to the resonances of the previous section .

Let us take p and yo fixed, and consider the behaviour of the Fresnel coefficients
as a function of u . Then the resonances are located at u=U CeS7 where the u.eSs are
solutions of

pc wave: u7e 5 =1 -p2 ,

a waves: u de s =1-c,

	

(83)

b waves: ufC S =c-p2 ,

provided that the equations have a solution in the range of u . We have suppressed the
case u=0, since the corresponding extrema are minima. The right-hand sides of
equation (83) are real, and the range of u 2 is - oo < u 2 < 1 . To see the physical
significance of the resonance conditions, we look at u,,,,=1-p 2 for the pc wave, and
the same picture will hold for the a- and b waves. If I -p 2 > 1 there is no solution and
the Fresnel coefficients will vary smoothly as a function of u . For 0 < 1-p 2 < I there
is a solution with 0 < uC3 < 1, which implies 0 < Ures < 1 because the u values are
restricted by 0 < u <, 1, and u = iv with v > 0. This situation corresponds to a travelling
incident wave with u=u7e5 . For u>Ures the pc wave is a travelling wave, and for
U < ure8 the pc-wave is evanescent . Exactly on the transition between the two
situations, the Fresnel coefficients have a sharp resonance . In the case that 1-p 2 < 0
we write uses= iv re$7 and the solution is vies =(p 2 -1) 112 . Then the incident wave is
evanescent, and the pc-wave is evanescent for V > v 1CS and travelling for v < vfes . We
notice the remarkable fact that an evanescent incident wave can be reflected by the
PC as a travelling wave .

In figures 5 and 6 we have plotted IX,,l for a travelling and an evanescent incident
field respectively . Curves a and b correspond to co t/w=1 .05 and owl/w=0.95, which
gives p=0. 905 and p=1 . 105 respectively . We chose the value 0 .05 for parameter y .
Then the solutions of equation (83) are for curves a

pc wave: u=0 .43,

a waves: v = 0- 10,

	

(84)

b waves : u=0 .44,
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I •0

X 0 . 5

U

X 0 .5

Figure 6 . Same as figure 5, but now as a function of v= -iu . For v larger than the resonance
of curve a the a wave is evanescent, and for v larger than 0.48, both the pc wave and the
b wave are evanescent, which gives rise to the peaks in curve b .

a

0 .5
U

Figure 5 . Absolute value ofXP, as a function of u for y=0-05, d = 5 and 0),/CO= 1 . 05 (curve a)
and co l /to=0 .95 (curve b) . The two peaks in curve a are situated at u re.=0 .43 and
ufC5=0 .44, and they appear because the pc wave and the b wave become evanescent for
lower values of u . In curve b the left-most peak corresponds to an evanescent a wave for
lower values of u, and the other peak is a phase-matching interference from section 8 .

1 .0

0 .5
V

I .0

I •0



and for curves b

For a travelling incident wave with w 1 >Co, there are two resonances as a function of
u, and, for an evanescent incident wave with co, > co, there is only a single resonance
as a function of v . If co, < co, there is only one resonance for a travelling incident wave,
but two for an evanescent wave . If p z 1 and y z 0 then the two resonances are always
very close together . This can be understood from the fact that s is very close to unity
in this limit .

10 . Specular reflection
In the limit of a weak interaction (yzO), in combination with close resonance

(p z 1), the Fresnel coefficients for the specularly-reflected waves at the incident
frequency co, are vanishingly small (section 8) . For large angles of incidence 0, the
parameter u 2 =cos2 0 (travelling incident wave) can be of the order of y o or Ip-11, in
which case the approximations of section 8 are not accurate . Since the specular wave
is also reflected back into the region z>0, it will interfere with the pc wave, and
therefore we cannot neglect this component in the situation of grazing incidence .
Figures 7 and 8 illustrate the behaviour of IX J for various angles of incidence . For
y z 0 and u z 1, IXr I indeed disappears, but for u-+0 the value of 1X 1 1 approaches
unity. Phase matching between the a- and b waves in the PC is again responsible for
the oscillatory behaviour of IXi as a function of d .

x
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pc wave: v = 0 .47,
a waves: u=0.11,

b waves: v=0.48 .

d

Figure 7 . Reflection coefficient for the specular wave as a function of the normalized layer
thickness d. The parameters are w l/w=1 .01 and y=0 . 05 . For curves a, b, and c we took
u=0 .2, 025 and 0. 45 respectively . It is seen that IX,I is not small for large angles of
incidence .

(85)
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Figure 8 . Same as figure 7 but with u=0.01 and 0. 1 for curves a and b, respectively . In the
limit u-*0, JXr I approaches unity, except at the sharp valleys, which correspond to a
perfect phase mismatch between the a- and b waves .

11 . Conclusions
We have studied the scattering of travelling and evanescent waves by a phase

conjugator in the four-wave mixing configuration, without restrictions on the angle
of incidence, the interaction strength or the frequency detuning with the pump-
beams. The Fresnel coefficients for the various waves were derived from Maxwell's
equations, subject to the appropriate boundary conditions, without the usual slowly-
varying amplitude approximation . It was shown that in the limit of weak coupling
and perfect resonance, the reflection coefficient for the pc-wave reduces to the well
known result (73), which implies the resonance condition (74) for a four-wave
mixing PC . We were able to track down the origin of these resonances to perfect
phase matching between the two (a and b) modes of the PC. In addition, we found
strong resonances at those values of the parameters for which one of the waves (a, b or
pc) turns from a travelling wave into an evanescent wave . We were not able to find a
convincing physical explanation for these resonances, but from numerical examples
it follows that they are definitely present . Finally, we showed that for large angles of
incidence the nonlinear specularly-reflected wave has an amplitude of the same order
as the pc wave .
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