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Fresnel coefficients for a phase conjugator
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Optical phase conjugation by four-wave mixing is examined in detail. The Fresnel coefficients for reflection andtransmission of a plane wave irradiating the surface of the phase conjugator are calculated. It appears that fornormal incidence and a weak nonlinear interaction the device produces the phase-conjugated beam with respect tothe incoming beam. For finite angles of incidence or stronger nonlinearities in the crystal, the generated wavedeviates from the ideal conjugated wave, and also a second, specularly reflected, wave appears.

1. INTRODUCTION

After the first demonstrations'-4 of the feasibility of generat-
ing phase-conjugated electromagnetic waves (with respect to
a reference wave), this technique has found important appli-
cations in optical engineering, especially in the design of
devices for the production of high-quality laser beams. If a
light ray is reflected by a phase-conjugating mirror, then its
wave front is reversed. This implies that a diverging beam
emanates as converging rather than as diverging, which
would be the situation for an ordinary mirror. In this fash-
ion, a distorted wave front can be corrected, after reflection
by a phase conjugator (PC), by letting it pass through the
same device that built up the distortion. 5 -7

Since wave-front reversal by PC's appears to work so well,
one can now anticipate more sophisticated applications. In
particular, lifetime modifications of atoms, which are due to
the fact that the atom radiates its fluorescence (in spontane-
ous decay) in the vicinity of a PC, are expected to be dramat-
ic.8 Emitted dipole radiation diverges from its source, and a
subsequent reflection by a PC can focus the wave exactly
back onto the atom. Stimulated absorption of photons can
then conceivably lead to (effective) infinite lifetimes of ex-
cited atomic states. This in turn leads to a reduction of the
natural linewidth, which might have consequences for fre-
quency standards. It was predicted9 that the linewidth
would vanish identically, if the reflectivity of the mirror
equaled unity, and this property would be independent of
the distance between the atom and the PC.

Although wave-front reversal has been proved to be possi-
ble in general, it is more difficult to achieve in practice if one
wants to extend the horizon of its applications. Let us
represent the electric field by its Fourier integral

E(r, t) = f dc,e-iwtP(r, 4 1127r _ .s ) 11

From E(r, t)* = E(r, t) we obtain the relation

t (r, 4)* = t:(r, -0. (1.2)

On the other hand, the phase-conjugated replica of E(r, t)

follows from the substitution R (r, w) - t (r, )* in Eq. (1.1),
and combination with Eq. (1.2) then yields

J dwe"iRt(r, w)* = E(r, t) (1-3)

Hence perfect phase conjugation is identical to time rever-
sal, and it is easy to argue that it is impossible to construct a
device that can accomplish that.

Time reversal (looking into the future) violates causality.
For the example of fluorescence, this would imply that at the
time the photon is emitted the atom already knows that the
phase-conjugated wave will be reflected back. If the dis-
tance between atom and mirror, divided by the speed of
light, is much larger than the atomic lifetime, then the pres-
ence of the PC should not affect the optical properties of the
atom any more, according to the principles of special relativ-
ity. Therefore more profound understanding of phase con-
jugation requires a time (or frequency) resolution in the
description, and in such a way that causality is preserved.
Besides that, the literature 10 -' 8 on reflection by PC's is large-
ly restricted to the case of normal incidence of the probe
field. Dipole radiation, for instance, is a spherical wave, and
consequently it is imperative to take a nonzero parallel com-
ponent of the incident wave vector into consideration.

2. CONSTITUTIVE EQUATION

If radiation is scattered by a vacuum-material interface,
then the reflected field often acquires a phase-conjugated
component. 19 Since we are interested in the basic possibili-
ties and limitations of producing phase-conjugated radia-
tion, we consider the simplest configuration, which is experi-
mentally realizable20 and has all the desired features. As
the active medium we choose a crystal that is transparent
(unit dielectric constant) for the frequency range under con-
sideration but has a significant third-order susceptibility
x(3)(W). Two strong counterpropagating and linearly polar-
ized laser beams with frequency > 0 are assumed to excite
the nonlinear interaction. A relatively weak incident
(probe) wave then induces a polarization P(r, t) in the crys-
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tal. Corresponding oscillating charges then emit radiation,
which gives rise to a reflected, phase-conjugated wave.

From the theory of four-wave mixing21 22 we know that the
(Fourier transform of the) polarization is then related to the
electric field by

P (r, ) = e7(i - o)*(r, co - 2Xc), co > 0. (2.1)

Here, E represent the electric field at r in the crystal, but it
does not include the two pump fields. The function (4)
represents the nonlinear material and will remain unspeci-
fied further. This quantity has the same status as the fre-
quency-dependent first-order susceptibility xMl)(X for di-

electrics. In the present situation, the X dependence of 7
equals the X dependence of X(3), shifted over the setting
frequency X of the phase conjugator. Furthermore, / is
proportional to the products of the amplitudes of the two
pump beams.

From P(r, t)* = P(r, t) we find that P(r, c)* = P(r, -w),
and with Eq. (1.2) we then obtain

f(r, ) = e0j(Z + w)R(r, 2i + 4), co < 0, (2.2).

the polarization for negative frequencies. Equations (2.1)
and (2.2) give P(r, co) for every co, and together they will be

considered the constitutive relation for a PC.
Because the frequency dependence of 7((D) represents the

frequency dependence of X(3)() around the setting a, the
function 1() should be strongly peaked around co - 0. From
Eq. (2.2) we then see that P(r, ) can be nonzero only for

frequencies c -a. Its value is proportional to E, evaluat-

ed at the frequency 2o + co - Z5. In other words, Eq. (2.2)

expresses that P around -co is determined by E around Zi
and is zero if X is sufficiently far away from -X. With this in

mind, the Fourier inverse of Eq. (2.2) is readily found to be

P(-)(r, t) = eoeiwt drf(r)exp[i5(t - r)]E( )(r, t - T),

(2.3)

where (-) and (+) indicate the negative- and positive-fre-
quency parts, respectively. The function f(r) is related to
7(4) by

( = jdr e (r), (2.4)

which is a Fourier integral if we set f(T < 0) = 0. Equation

(2.3) expresses that the polarization at time t is determined
by the electric field in the past only. Therefore the mecha-
nism of phase conjugation is causal.

3. COUPLED-WAVE EQUATIONS

In terms of a polarization, the Fourier-transformed Maxwell
equations read as

v [(r, 4) + P(r, 4)] = 0,

v * B(r, 4) = 0,

v X (r, 4) - iv(r, 4) = 0,

,'v-lv X t(r, 4) + i[E 0R(r, 4) + P(r, 4)] = 0,

(3.1)

(3.2)

(3.3)

(3.4)

which should be obeyed for every X separately. Outside the
PC we have P = 0; inside we set P equal to expression (2.1) or

(2.2), depending on the sign of w. Furthermore, Eqs. (3.1)-
(3.4) imply the boundary conditions at the interface in the
usual way.

The polarization P at frequency X is expressed in E at a
different frequency, and therefore Eqs. (3.1) and (3.4) couple
sets of Maxwell equations for different frequencies. If we
take a fixed frequency w - a, then the polarization P(r, xl)
is brought about by the electric field at wl - 2Z < 0, accord-
ing to Eq. (2.1). On the other hand, the polarization at ci-
2Z6 is induced by fE(r, xl), as follows from Eq. (2.2). There-
fore Maxwell's equations couple positive and negative fre-
quencies two by two. If we take xl X > 0, then this

frequency couples with C2 -CD < 0, and their relation is

(3.5)Cv1 - W = 2 + °-).

For the fields inside the PC we eliminate A with Eq. (3.3):

t(r, 4) = -i-lv X t(r, 4) for c = C0L1 W2 . (3.6)

Then Eq. (3.2) is automatically satisfied, and Maxwell's
equations are equivalent to

v * (r, c) = 0 for c = 1,, 2 (3.7)

v2i(r, cl,) + (/c) 2[i(r, co,) + t(Z5 - cl)*t(r, cv2)] = 0,
(3.8)

v 2E(r, C02) + ((02/c)2[t(r, Cv2) + A(j + W2)(r, C,)] = 0.
(3.9)

Equation (3.7) expresses that the electric field is transverse,
and Eqs. (3.8) and (3.9) show that the fields at xl and CL2 obey
a set of coupled-wave equations.

4. PLANE WAVES

Solutions of the set Eqs. (3.7)-(3.9) are easily found.
try

Ea(r, ,) = Ea exp(ika r)

ta(r, Cv2 ) = )laEa exp(ika * r),

then Eqs. (3.7)-(3.9) become

ka a 0,= 
ka2 = (,/c) 2 [1 + m1aJ(6 - o,)*],

ka2 = (C2/C)2[l + na'71(i + C2)]-

If we

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Equations (4.4) and (4.5) both express the (complex-valued)
wave number in the ratio of amplitudes 1a of the co, and W2

waves. Equating the right-hand sides gives a quadratic
equation for fla, which admits of two acceptable solutions.
For reasons that will become clear in what follows, we choose

[1 - (W11/2)2 (1 - D)
2(Wv/CO2)2 f( - C01)*

in terms of the parameter

4(W11/cv2)2 (Z5 - cv )*f(Zw + c2 )I1/2

[1 - (11/2)2]2 J

(4.6)

(4.7)

Equations (4.6) and (4.7) express la in the given function 7,

H. F. Arnoldus and T. F. George



32 J. Opt. Soc. Am. B/Vol. 6, No. 1/January 1989 H. F. Arnoldus and T. F. George

and with Eq. (4.4) we find ka2 . For a given frequency depen-
dence of 1(w), Eq. (4.4) is then the dispersion relation for the
PC.

Instead of retaining two possible values for f7a, we seek a
second solution of the form

(4.8)

(4.9)

PEb(r, w) = t1bEb exp(ikb r)

Pb(r, c2) = Eb exp(ikb * r),

and in the same way we find

kb Eb = 0, (4.10)

kb2 = ( 2/c)2[1 + _qbA(W + c,)], (4.11)

kb2 = (cv/c)2[1 + nb7' 1 - 1)*J. (4.12)

Again, there are two solutions for flb, but now we take

[(c,/c2)2 -1](1 - D)
'lb - 2(Z + 2) (4.13)

Substitution of flb into Eq. (4.11) then gives a second branch
of the dispersion relation. It is easy to check that the b
solution is precisely the discarded a solution.

In the limit - 0, corresponding to a switch-off of the
interaction, we find that

na 0, ka
2 (c,/c) 2

, (4.14)

and hence the cv2 wave disappears. The dispersion relation
for the c wave is the same as for a wave in a vacuum. This
implies that the a solution is essentially an c, wave, but
owing to the nonlinear interaction I /- 0 there is a mixing
with the cv2 wave, which is excited with a relative amplitude
-qa. The second, suppressed solution for fa would give na 
- forf , i0. Since the amplitude of the cv2 wave must remain
finite, this would imply that E 0, flaEa finite, indicating
that the cv1 wave disappears in comparison with the cv2 wave.
The property fla - for I - 0 is inconvenient. Therefore
we have introduced the second solution with the normaliza-
tion as given by Eqs. (4.8) and (4.9). For - 0 we now
obtain

'b , kb2 (2/C )2, (4.15)

5. WAVES AT AN INTERFACE

Consider position space to be divided in vacuum (z > 0) and
a PC (z < 0), separated by a plane boundary (z = 0). Inci-
dent upon this interface, and from the vacuum side, is a
plane monochromatic wave with frequency c1 > 0,

ki(r, c,) = E exp(ik r), (5.1)

with amplitude and polarization E and wave vector k as-
sumed to be given. From Maxwell's Eqs. (3.1)-(3.4) we find
the constraints

k2 = (,/c) 2, k*E = 0. (5.2)

If we write k = k1l + kI, where 11 and I refer to the plane z =
0, then the z component of k is

kz = -(k 2 - k 11
2
)'

1 2
. (5.3)

The question is what the reflected and transmitted waves
are. In this section we establish which waves occur and
determine their wave vectors. In Section 6 we evaluate their
amplitudes (including phase and polarization), e.g., the
Fresnel coefficients.

Waves in z > 0 and in z < 0 must match at z = 0 according
to the boundary conditions. Every plane wave contains a
factor exp(ika r), which equals exp(ik 1 l r) at z = 0.
Boundary conditions can be satisfied only if these exponen-
tials cancel, implying that the parallel component of every
wave vector must be identical, e.g.,

ka,11 = kl (5.4)

for any wave vector ka in z > 0 and z < 0. Then, in both z > 0
and z < 0, the value of k 2 follows from the dispersion
relation, given the frequency, which in turn gives for the
perpendicular component the two possibilities k = (k,,2
- k 2)1/2 . The sign in front of the square root determines
whether the wave travels in the +z or the -z direction.
Since the incident wave has frequency l, which couples only
to cv2, these considerations limit the number of possible
plane waves to four in z > 0 and eight in z < 0.

Let us first look at the region z > 0. Besides the incident
wave at frequency c, the only other possibility for waves at
cw1 is the common reflected wave with

showing that the b solution is essentially an 2 wave, modi-
fied by the nonlinear interaction.

From Eqs. (4.1) and (4.2) we notice that the co, and cv2
waves seem to have the same wave vector and polarization
and that their ratio of amplitudes equals 7a However, be-
cause cw > 0 and cv2 < 0, the waves are counterpropagating.
In the time domain, the cv2 wave has a factor exp(ik r -
ic 2t) + c.c., which represents a wave with wave vector -ka.
Finally, we mention two interesting relations between the a
and b solutions. For the amplitude factors we have

1a = 0 _/22 ( + 2)
7(zb +@1) cv2) (4.16)

and the wave numbers are related according to

ha2 + khb2 = (/c) 2 + (2/c) 2, (4.17)

independent of the interaction strength,.

krz =-kz > . (5.5)

Therefore the most general expression for the electric field
at frequency w, in z > 0 reads as

i:(r, cv) = E exp(ik r) + E exp(ikr r), (5.6)

with only Er yet to be determined. For the field at 2, we
again have two possible waves, which differ only in their sign
of the z component of the wave vector. Of course, it is tacitly
assumed that the incident wave is the only external field,
which implies that an 

2 wave in z > 0 can travel only in the
+z direction. We shall refer to this wave as the phase-
conjugated wave, and it is represented by

E(r, cv) = EPC exp(ikpc * r). (5.7)

The fact that a wave with 2 < 0 propagates in a direction
opposite its wave vector then gives

kpc = -[(W 2/c) 2 - k 11
2
]1/2

. (5.8)



Vol. 6, No. 1/January 1989/J. Opt. Soc. Am. B 33

If the incident field is exactly on resonance with the PC, we

then have xl = Z, = -, and kpc,, = k2 . Combining this
with Eq. (5.4) shows that in this case kpc = k, and hence the
PC wave and the incident wave counterpropagate exactly.
Therefore the field at 2 in z > 0 is the phase-conjugated
replica of the incident field (possibly apart from polarization
and amplitude), if cv1 = Z. Furthermore, we notice that for
-X 2 is l, kpc,z can be imaginary, corresponding to an eva-
nescent wave.

In the PC we have the independent a and b solutions from
Section 4. Both solutions can occur with a + or a - in the
definition of the z component of the wave vector. This
amounts to four different solutions, and each of them con-
sists of two waves (at xl and 2). For the corresponding
problem with a dielectric, we know that we can discard the
wave that propagates in the +z direction, but for a PC it is
not obvious which waves are the causal waves. This results
from the fact that every solution consists of two counter-
propagating waves. The only clue at this stage is that, in the
limit 7 - 0, the incident field must propagate undisturbed
through the crystal, and every other component must van-
ish. This corresponds to the a solution with

kaz =-(ha - kl1
2)12, (5.9)

Whether the other three solutions are excited by the inci-
dent field seems to be impossible to find out a priori. We
have to consider the full solution for z < 0, calculate all
amplitudes by matching boundary values, and then require
that all fields disappear in the limit E - 0. In carrying out
this procedure, we have found that only the b solution with

kb,z = (kb2
- k1

2
)1"

2

r

es

9P i\
1I_) 1 1

b& A

Fig. 1. Polarization convention for the various waves. All s-polar-
ization vectors, perpendicular to the plane of incidence, point in the
same direction. For p-polarized waves we choose the unit vectors
such that their z components are negative in the limit , - 0 (for , d
0 the z components might be complex). The arrows with letters
next to them indicate the wave vectors. Their parallel components
are all equal to k1l, and the figure shows the sign of their z component
in the limits -> 0.

E = Ee,

Er = RsEers, Epc = P8Eepc0 ,,

Ea = Ta.sEeas, Eb = Tb,SEeb,s,

and for an incident p wave we replace the subscripts s
We obtain the results that

R. = I [(k -sZ.
(5.10)

is excited by the incident wave. This field corresponds to an
c2-like wave, which propogates in the -z direction. For the
field in z < 0 we can now write

ka,(kPCz - kb,z)

+ ?laflb(a,z - kPC0 )(kz - kb,)],

P. = 1 2_0akz(ka,z - b,z),
Z"

(6.1)

(6.2)

(6.3)

by p.

(6.4)

(6.5)

IN(r, xl) = Ea exp(ika r) + nbEb exp(ikb r) (5.11)

R(r, W2) = flaEa exp(ika r) + Eb exp(ikb r), (5.12)

and only Ea and Eb remain to be determined.

6. FRESNEL COEFFICIENTS

The fields from Section 5 must be matched across z = 0, with
the conditions that (eot + P)I, IlI, and B be continuous for
both co, and c2. Furthermore, we have the restrictions that
ka Ea = 0 for every wave. This procedure fixes the ampli-
tudes Er, Epc, Ea, and Eb in terms of E. Notice that two
components of the field for z < 0 acquire an additional factor
of flb or -qa in their amplitudes, according to Eqs. (5.11) and
(5.12).

As usual, it is advantageous to distinguish between an s-
(-surface) and a p- (-plane) polarized incident wave. Then
all other waves are s or p polarized. In Fig. 1 we have
summarized the polarization convention that is adopted
here. All unit vectors are normalized as ea -ea = 1, and their
directions follow from ea * ka = 0 in combination with the
convention from Fig. 1. Since the ka's are not necessarily
real, the unit vectors for p polarization will be complex, in
general. Then the Fresnel coefficients for s waves are de-
fined by the notation

Tas = 2kz(kpcz - b,z),

Tb,8 = Z 2,7akz( a~z- C,

RP = [( Z 2 kaz) (kPCz k -kb)

+ ?a?b(kaz - kP k )(Z k kbz)]

1 = k -PP = -2nZ k -
(k kb2ka,z k 2 kbZ kC),

1 hal kb 
2

Talp = - 2k, kpcsz k2- kbz' zP P C z k 0

T ± 2'7akz kb- -kpc _z _

Tb,p = j1 k ( a,z hp0, k 2 )'

where we have introduced the abbreviations

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

.. . .. . .. . - - - -sw/S}X// //////// 

H. F. Arnoldus and T. F. George



34 J. Opt. Soc. Am. B/Vol. 6, No. 1/January 1989

Z = (k2 + ka,) (kpC, - kb,Z) + lafb(kaz - kpc0 ,)(k2 + kbZ),

(6.12)

ZP , z+ hk2., k 2-kb.z)
k - kc C )

+ 'qa77b ka,z- kpc,z 2 2)kz k2 + kbz 

.5

INP

1

(6.13)

With the explicit expressions for the z components of the
various wave vectors from Section 5, Eqs. (6.4)-(6.13) deter-
mine the Fresnel coefficients in terms of (co) and k 11

2 [or of
/() and the angle of incidence].

7. PHASE CONJUGATION

The incident wave gives rise to an (ordinary) reflected wave,
a reflected phase-conjugated wave, and four transmitted
waves. It is easy to check from the formulas above that in
the limiti - 0 both Ta,s and Tap approach unity and that the
other Fresnel coefficients vanish. In this limit the PC is
transparent, as it should be. For? Jt 0 the PC wave appears,
but so does the r wave (not to be confused with reflection at a
dielectric; this r wave is merely a result of the four-wave
mixing). The presence of the r wave already indicates that
this device cannot be a perfect PC, even if the PC wave were
the phase-conjugated signal with respect to the incident
wave.

Perfect phase conjugation would be achieved if R = R=
0, P = P = 1, the transmission coefficients were arbitrary,
and c 2 =-c 1 - With our expressions for the wave vectors and
the Fresnel coefficients it is easy to investigate the quality of
phase conjugation in a particular situation. Let us first
assume that the incident field is on resonance with the PC
(cv = Zn), which can always be managed by tuning the pump
fields. Then we write

(0) = yeiO, -y > O. 0 real,

a

0.5

0 0.5 1
Cos ei

Fig. 2. Reflectivity coefficients P1 (curve a) and IPpI (curve b) for
the phase-conjugated wave as a function of the cosine of the angle of
incidence. For angles between 0 and 600 we have P1 = Pp 1,
which corresponds to perfect phase conjugation. For larger angles,
however, the operation of the device is far from perfect, and for
parallel incidence the phase-conjugated wave disappears complete-
ly. The peaks in the two curves reflect an amplification of the
intensity of the phase-conjugated wave with respect to the intensity
of the incident wave. The parameters are wl =, -y = 0.1, and o = 0.

As a second condition we take

-Y << 1, (7.5)

and subsequently we choose the angle of incidence to be zero
(k = 0). Then the Fresnel coefficients simplify considera-
bly, and we obtain

R = 1/26y << 1,

P =-be"',.

Ta,s= 1,

Tb,, = 1/4 -ye"' << 1.

(7.1)

so that y measures the strength of the nonlinear interaction.
From Eqs. (4.6), (4.7), and (4.13) we then find that

P = -be nb = e~', (7.2)

where

61 if W<Z
{-1 if > 7

First, we observe that 17al = tib = 1, and in view of Eqs. (4.1)
and (4.2) or (4.8) and (4.9) this means that the c and 2
waves have the same amplitude, independent of the interac-
tion strength -y. Second, we notice that and rnb are discon-
tinuous if we pass c over the resonance c; third, Eq. (7.2)
might seem to be in conflict with expressions (4.14) and
(4.15). From Eq. (4.7), however, we see that close resonance
in fact means that

cv1 - 2
1

<< (7.4)
c1

or that the relative detuning must be much smaller than the
coupling strength. Conversely, the limit ,t- 0 should read
as y >> 1 - 2 /v1.

(7.6)

(7.7)

(7.8)

(7.9)

Equation (7.8) expresses that the amplitude of the incident
beam is not affected by the crystal (up to order y), as could
be expected from the fact that for -y - 0 the PC becomes
transparent. Furthermore, the ordinary reflected wave and
the b waves disappear for small. Most remarkable is that
IPS = 1 in this limit, which implies perfect phase conjugation
for a monochromatic wave on resonance and of perpendicu-
lar incidence. This feature, which is present for an arbi-
trarily small nonlinear interaction strength y, justifies the
name PC for this device. Figure 2 illustrates the depen-
dence of 1P1 and IPpI on the angle of incidence.

8. CONCLUSIONS

In order to investigate quantitatively the possibilities and
limitations of optical phase conjugation, we have worked out
the realistic case in which the conjugated wave is generated
by four-wave mixing in a nonlinear medium. Since every
electromagnetic wave that is incident upon the PC can be
decomposed into plane waves, it is sufficient to evaluate the
response of the PC to an external plane wave. We found
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that a PC reflects an ordinary and a phase-conjugated wave
back into the vacuum and that the transmitted wave has
four components for a half-infinite medium. The wave vec-
tors and Fresnel coefficients were obtained in terms of the
incident wave vector and frequency and of the function Ac),
which represents the PC. Reflection and transmission an-
gles for the rays follow from the wave vectors, and the inten-
sities and polarizations are determined by the Fresnel coeffi-
cients.

It was shown that the device indeed operates as a PC if the
angle of incidence is zero, the wave is on resonance with the
PC, and the nonlinear interaction is weak. Conversely, for
every other situation the PC conjugates the wave only par-
tially and in addition emits an ordinary reflected wave. In
spectroscopic applications, in which spherical waves irradi-
ate the PC, many plane-wave components have a nonzero
angle of incidence for which the PC is nonideal. Because it
is the interference of all reflected and incident waves that
determines, for instance, the lifetime of an atom near the
surface, it is inevitable that these imperfections must be
taken into account. Moreover, it was pointed out in Section
1 that a perfect phase-conjugating medium should not exist,
owing to causality requirements.
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