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Abstract. Correlations between photons emitted by an atom in a laser field and near a 
metal surface are studied. With polarisation-dependent detection it is feasible to select 
photons which are emitted in a specific transition between degenerate substates. Both the 
Einstein coefficient for spontaneous decay of a particular excited substate and its branching 
towards the various ground states depend on the distance between the atom and the surface. 
A combination of these notions to design a geometry for the correlated detection of polarised 
photons is employed, in order to predict a strong dependence of the correlation functions 
on the atom-surface distance. In general, an enhancement of the correlations between 
emitted photons due to the presence of the metal surface is found if the atom-surface 
distance is (roughly) less than 20% of the wavelength of the fluorescence radiation. In 
particular the correlations between circularly polarised photons with the same helicity are 
modified dramatically, and the correlation time tends to infinity if the atom approaches 
the surface. It is pointed out how the different photon correlations can be understood 
from a simple interpretation of transition diagrams. 

1. Introduction 

Atoms near a metal surface have different optical properties than in free space. When 
an excited atom decays spontaneously to a lower state, it emits a fluorescent photon, 
which travels away from the atom. In the presence of an optically active boundary 
the photon can be reflected and then return to the atom, which experiences it as an 
external field. Stimulated absorption of this photon then effectively enhances the 
lifetime of the excited state since the net result is no emission at all. From a slightly 
different point of view we can regard the combination of atom and surface (induced 
charges and currents) as the system which actually decays under emission of a photon. 
Inhibition of the emission of photons is then considered as a consequence of the fact 
that radiation energy is temporarily stored in between the atom and the surface (photons 
travelling back and forth). In a third perspective we can say that the vacuum field in 
the half space above the surface is different from a vacuum field in empty space. Since 
it is the coupling between the atomic dipole moment and the empty modes of the 
electromagnetic field which provides the mechanism for spontaneous decay, it is 
obvious that the presence of a metal surface affects the decay process. This variety of 
interpretations about the mechanism of alteration of lifetimes is reminiscent of the 
discussion about self-reaction versus vacuum fluctuations, concerning the spontaneous 
decay of an atom in free space (Milonni et a1 1973, Dalibard et a1 1982, 1984). 
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Experimental evidence for a molecule-surface distance dependence of a lifetime 
was first found by Drexhage (1974) for molecular dye layers on a dielectric. Then 
Kleppner ( 198 1) proposed to consider transitions between atomic Rydberg states, 
where the atom is confined in a high-Q cavity or waveguide. These experiments were 
carried out, and cavity-enhanced spontaneous emission was observed by Goy et a1 
(1985), and Hulet et a1 (1985) reported inhibition of the decay. Very recently a 
suppressed spontaneous decay was observed for an optical transition in caesium (Jhe 
er al 1987). The change of lifetime was brought about by passing the atomic beam 
through a tunnel of parallel mirrors. Calculations of lifetimes are numerous. We 
mention the early work of Morawitz (1969) concerning the decay of a two-level atom 
near a mirror and the extensions by Milonni and Knight (1973) to an atom in between 
two mirrors. More general approaches were developed by Agarwal (1974, 1975), 
including arbitrarily shaped dielectric substrates. Critical comments about the two-level 
model were made by Barton (1974). 

We consider an atom near a metal surface and impose the limit of infinite conduc- 
tivity. This pertains to the situation in the quoted experiments, where a surface 
reflectivity of about 96% could be achieved. Rather than obtaining information about 
the atom-surface interaction through the observation of the decay of the excited state, 
it should also be feasible to probe the system by a laser. With a c w  laser we can 
conceivably drive a specific atomic transition and study the resonance fluorescence. 
A first advantage is that this method is in principle stationary, which implies that we 
can improve the statistics of a measurement by increasing the observation time. 
Secondly, the procedure is more flexible, since a variety of properties of the fluorescence 
can be measured, which all carry specific information about the radiating system. Lin 
er a1 (1983), Huang er a1 (1984) and Huang and George (1984) calculated the spectral 
distribution of the radiation emitted by a two-state atom. We shall consider the temporal 
correlations between fluorescent photons, detected with a well defined polarisation 
and emitted by a degenerate two-level atom. In a previous paper (Arnoldus and George 
1987) we studied the case where the atom effectively behaves as a two-state system, 
which can be managed by choosing a specific atomic transition and laser polarisation. 
We now extend our calculations to the situation where the atom is essentially a 
multilevel atom, which opens a variety of new possibilities. After the general theory 
in $9 2-4, we shall elaborate on the case j ,  = j g  = $, which generalises the results for 
atoms in free space (Cohen-Tannoudji and Reynaud 1979). 

2. Spontaneous decay 

An atom is positioned at a distance h above a perfect conductor. Two degenerate 
levels, which are in close resonance with the incident laser field will be denoted by 
Ij, me) (excited) and I j ,  mg) (ground), and they have energies hw, and fiwg, respectively, 
with wo = w e  - wg > 0. The significance of the magnetic quantum numbers me and mg 
is fixed as soon as an atomic quantisation axis is prescribed. A convenient choice is 
the direction perpendicular to the surface, indicated by the z axis, and the solid will 
be assumed to occupy the half space z < 0. Then the Einstein coefficient for spontaneous 
decay (inverse lifetime) of the substate l jeme) is given by (Arnoldus and George 1987) 

Ame=AfC bT(woh/c) (jgmglTIjeme)* (2.1) 
7 ma 

where T takes on the values -1,O, 1. The functions b,, which embody the distance 
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dependence of the lifetimes, are explicitly 

and they approach unity for x = w o h / c +  CO. In that situation we find from the 
orthogonality relations for Clebsch-Gordan coefficients that Am= = Ap Hence every 
substate decays with the same rate constant 

expressing the isotropy of fluorescent emission by free atoms. Near a surface the 
substates have different Einstein coefficients, and from b,, = b- ,  we find the relation 

A m e  = A -  me (2.5) 

as a result of the remaining cylindrical symmetry around the z axis. Non-vanishing 
Clebsch-Gordan coefficients in equation (2.1) obey the relation m,+ 7 = m e .  Therefore, 
an I me - mg/ = 1 transition has an atom-surface-dependent Einstein coefficient, which 
is governed by b , , ( w o h / c ) ,  whereas an \ m e -  m,l = 0 transition constant is proportional 
to bo(wo h / c ) .  Contributions to Arne with 7 = +1 originate from the parallel components, 
with respect to the surface, of the atomic dipole operator p, whereas the T = O  term 
comes from the perpendicular component. For this reason we distinguish between 
two fundamental Einstein coefficients in the vicinity of a perfect conductor: 

A ,  = Af bo(w0 h/  c )  All = A J J * , ( w o h / c )  (2.6) 

which both tend to Af for h + w .  From (2.1) we then find the sum rule 

for the average decay constant. 
Spontaneous decay of the atom gives rise to a damping of its density operator a( t )  

in a time evolution. This relaxation is most conveniently accounted for by a Liouville 
operator r, which acts on (+ according to (Arnoldus and George 1987) 

1 
ru=; C A~(Ijem~)(jemeIu+(+Ijeme)(jemeI) 

m. 

- A f C  b 7 ( w o h / c )  C (jemeI (+ Ij, m W ,  mglTlje me) 
7 me "'7 

m :  ms 

x (j, mL17 I j e  m:) Ij, m&jg mLl. (2.8 j 

3. Laser-driven system 

A laser field with central frequency wL, polarisation E ,  wavevector k (with k - E = 0), 
amplitude Eo and linewidth A is incident upon the surface. This radiation reflects on 
the surface, and the sum of incident and reflected fields evaluated at he, equals the 
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external field, which is experienced by the atom. In terms of the projectors onto the 
excited state and ground state 

(3.1) 

the dipole coupling can be expressed in terms of a 'Rabi operator' 

a ( h )  = h - ' ~ ~ P , ( p ~ ( h k .  e,) - E ) P ~  

p s ( x )  = 2 cos(x)p,+2i s in(x)pl l .  

(3.2) 

(3.3) 

which involves an effective (non-Hermitian) dipole moment 

Here, the atomic dipole moment p is divided into a perpendicular and parallel part 
with respect to the surface. This laser-atom interaction introduces the second atom- 
surface distance dependence in the problem, although in a rather trivial way. The 
Hamiltonian which governs the behaviour of the atom in the external field can now 
be written as 

H d  = h W e  p, -k h ( W g  + W L )  Pg - 5 h (a( h ) + a( h ) ') (3.4) 
where this Hd is usually referred to as the dressed-atom Hamiltonian (Cohen-Tannoudji 
1977). 

In the compact Liouville formalism the equation of motion reads 

d a  
d t  

i -=(Ld- iW-i r )o  (3.5) 

for the atomic density operator in the rotating frame (Allen and Eberly 1975). Spon- 
taneous decay is incorporated in r (equation (2.8)), the free evolution of the dressed 
atom is represented by 

LdV= h-'[Hd, U] (3.6) 
and the relaxation operator W, which accounts for the laser linewidth, is given by 
(Agarwal 1978) 

WU = A ( Pg U + upg - 2Pg upg) (3.7) 
where A is the halfwidth at half maximum of the Lorentzian laser profile. 

Of particular importance is the long-time solution, or steady state, which obeys 

( L d - i W - i r ) a = O  a+=* T r @ = l  (3.8) 
where we have indicated U( t = 00) by 6. 

For later purposes we write down the matrix elements of the Rabi operator Cl(h) .  
Due to the appearance of the projectors in equation (3.2), the only possibly non- 
vanishing matrix elements are 

with k, = k e,, and in terms of the spherical unit vectors with respect to the z axis 

e,, = 7 (ex * i e , , ) / a .  (3.10) 

Then zero Clebsch-Gordan coefficients for particular values of j,, mer jg, mg express 
the dipole selection rules. 
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4. Photon detection 

Temporal correlations between photons in an electromagnetic field can be understood 
most easily from the theory of photon detection by a photomultiplier tube (PM),  as 
developed by Glauber (1965) and Kelley and Kleiner (1964). Polarisation-dependent 
measurements can be performed by putting a polariser in front of the PM, which only 
transmits the e, component of the incident radiation. In the case under consideration, 
we position a PM with polariser e, in the region z > 0 in such a way that the propagation 
direction i of the fluorescence which ends up in the detector is perpendicular to e,. 
Then there is a simple relationship between the detection of a photon with polarisation 
e, and its emission in the direction E. For an atom near a perfect conductor we find, 
with a slight generalisation of Arnoldus and Nienhuis (1983), that the photon-emission 
operator R ,  equals 

Ru c = C I j g  mg)(jg m; I ( j e  me I I j e  mi) 
"em* 
mb mh 

x ( j e  me I I L ~ ( W ~ ' ~ )  ea l j g  mg)*(je m: I /&(Word)  * e, I j g  m;) (4.1) 

which defines its action on an arbitrary atomic density operator U. The appearance 
of &(WoTd), rather than the dipole operator p itself (as for a free atom), represents 
the interference between photons which travel directly from the atom to the detector 
and photons which are first reflected by the surface. Here, Td = c- ' ; .  he, equals half 
the delay time of a reflected photon. 

We shall always assume that the atom has been in the laser field for a sufficiently 
long time, so that ~ ( t )  has reached its steady state 6. Then the number of detected 
photons per unit of time with polarisation e, is proportional to the expectation value 
of R,. We write for this counting rate or intensity 

I ,  = 5, Tr RUC (4.2) 

where 5, is a detector parameter, depending on the efficiency, transmission factor of 
the polariser, aperture, etc. We can evaluate I ,  immediately for any configuration as 
soon as we have solved equation (3.8) for 6. 

More interesting are the two-photon correlations. Suppose we have two detectors 
with polarisers e, and ep.  Then we can define the intensity correlation for the detection 
of two polarised photons as lap( t,, t 2 )  dt, dt,, which is the probability for the detection 
of a photon with polarisation e, in [ t l ,  t l  + dt,] and the detection of a photon with 
polarisation ep in [ f 2 ,  t2+dt2], irrespective of detections at other times. From the 
quoted detector theory it then follows that Z U p  equals 

(4.3) L p ( t 1 ,  f2) = 5 p l a  Tr R, U(t2- tl)R'Y6 t 2 2  t ,  

in terms of the time-regression operator U (  t )  for the atomic-density operator. From 
equation (3.5) we find explicitly 

U (  t )  = exp[-i(ld - i W - i r ) t ] .  (4.4) 

The importance of the study of photon correlations is most obvious from expression 
(4.3). It is the time-evolution operator U ( t )  for the atom, including its interactions 
with the environment, which determines the time delay t2 - t l  between two emissions. 
Therefore, dynamical properties of the radiating system will be reflected in the details 
of ZaB( t l ,  t 2 ) .  The two-photon correlation functions have been measured for free sodium 
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atoms in a laser beam (Kimble er a1 1977, 1978, Dagenais and Mandel 1978), and 
excellent agreement with theoretical predictions was found. 

From definition (4.1) we readily find 

R p R ,  = O  and I a p ( t l ,  t l ) = O  (4.5) 

which displays the fact that emission of two photons with a zero time delay cannot 
occur in two-level atom resonance fluorescence. This phenomenon is termed antibunch- 
ing of photons (Paul 1982). On the other hand, we find from the conservation of trace 
in a time evolution with U ( t )  the identity 

lim U (  t ) R , 6  = d Tr R,6 
1 - 0 2  

(4.6) 

which implies for the detection of two photons with a long time delay 

L p ( f 1 ,  t l  +a) = L Z p  (4.7) 

i.e. the detections are uncorrelated. It is convention (Lenstra 1982) to introduce the 
normalised quantity 

f p , ( t )  = L p ( t 1 ,  t l +  r ) / L  (4.8) 

which has the significance of the probability for the detection of a photon with 
polarisation ep at time t, after the detection of a photon with polarisation e, at time 
zero. Its short- and long-time values are 

fpC?(O)  = 0 f p a  (00) = r p  (4.9) 

where the last equality states that for large t the memory of the emission of the e, 
photon at time zero is erased. 

5. Geometry 

It is the purpose of this paper to take advantage of the degeneracies of the atomic 
levels in combination with the option of detecting photons with a polarisation resol- 
ution, in order to obtain maximum information about atomic lifetimes near a metal 
surface through the process of photon counting (intensity and correlation). From (3.9) 
it follows that the simplest non-trivial (not effectively a two-level atom) coupling 
scheme arises for j ,  = j g  = i. Then both atomic levels are twofold degenerate, and they 
will be abbreviated as le*) and Ig+) in a self-explanatory notation. We take k in the 
xy plane (propagation along the surface), and a linear laser polarisation E = e,. For 
this configuration the h dependence of a( h )  disappears. 

The polarisation dependence of photon detection is determined by matrix elements 
of 

ps( WOTd) ' e, = 2 cos( w o T d ) p I  ' e, + 2i sin(woTd)pll * e, (5.1) 

with T d = i * e , h / c ,  according to equation (4.1). For a PM in the xy plane we have 
74 = 0, and (5.1) reduces to 2p, * e,. Obviously, the disappearance of the contribution 
from pll is a result of interference between directly emitted and reflected photons. 
With pI - e, = (pI - e,)(e,  * e=) we find that the only effect of the polariser is a contribu- 
tion of a factor le, * e,]' in R,, and from that we conclude that the radiation is linearly 
polarised in the z direction. Therefore, we can choose e, = e, without loss of generality. 
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Of course, the fact that the radiation is linearly polarised in the xy plane follows 
immediately from the boundary conditions near a perfect conductor. Subsequently 
we consider a PM on the z axis, for which expression (5.1) reduces to 
2i sin(w,h/c)pil . e,. Here we have to choose two independent polarisation directions 
e,, perpendicular to the z axis, which will be taken as the spherical unit vectors e*,. 
Photon-emission operators will be denoted by Ro (detection in the xy plane) and R ,  
(propagation direction of fluorescence perpendicular to the surface). Figure 1 illustrates 
and summarises the geometry and polarisations. 

I ,  I 

E 

Figure 1. Schematic representation of the spatial configuration for the correlation measure- 
ment of polarised photons, which are emitted by an atom at a distance h above a perfectly 
conducting metal. A laser beam with wavevector k and polarisation E irradiates the atom, 
and the emitted fluorescence (wiggly arrow) is detected by a combination of photomulti- 
pliers and polarisers. The detector R,  in the xy plane has a linear polarisation filter, and 
the detectors R ,  above the surface count circularly polarised photons. 

The coupling strength with the laser field will be expressed in the Rabi frequency 

( 5 . 2 )  

Then the equation of motion (3.5) can easily be expanded in matrix elements to yield 
a set of 16 coupled linear first-order differential equations. Two of them read 

d - (g.t I (TI g i )  = $ A l ( e i  I cr 1 e i )  
d t  

(complex number) 

no = h - ' M ) ' ' 2 ( e  /I /I II g). 

+fAl l (eF  I crI eF)T$iflo(g=k I crl e*)*$iQ$(e* I cr1g.t) (5.3) 

from which we deduce that the upper states le*) decay to 1g.t) with Einstein coefficient 
A,/3, and to Ig'F) with 2A11/3. The total decay constants for the upper states 
will be denoted by 

A = k ~ ,  + $A,,  . (5.4) 

Figure 2 illustrates the level configuration and the various couplings. 
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l e - )  l e + )  
c 

Figure 2. Level configuration for j ,  = j p  = 4 and radiative transitions. Two double arrows 
indicate stimulated excitation by the laser, and the four single arrows represent spontaneous 
decay and photon emission. The geometry of figure 1 is designed in such a way that 
photons which are emitted in a transition denoted by R,, R _  or R, are detected by the 
corresponding devices of figure 1. 

Of relevance to the photon-detection probabilities are the populations of the excited 
states le*), in the steady state. Solving equation (3.8) gives immediately 

S Z , ~ ~ ( ; A +  A )  
n e =  (e* I c i le i )  = 

lSZo12(iA + A )  + A [  ( $ A  + A)’ + A’] (5.5) 

and furthermore the population (g* I 6 1 g*), and the coherences (e* I 6 I g*) and 
(g* 16 1 e*) acquire a finite value. The other eight matrix elements of 6 vanish identi- 
cally. Here, A = wL - wo is the detuning of the laser from resonance. Notice that the 
populations of the excited states depend only on the total Einstein coefficient A, rather 
than on A ,  and All  separately. This can be understood from the fact that it does not 
matter for the populations of le*) to which ground state they decay. 

From (4.1) we find the photon-emission operators for the three polarisation direc- 
tions 

R, U = 2 sin2( wo h /c ) ( e i  I ( + I  e*) 1 gF)(gT 1 (5.6) 
Row = mm’(em1 cTlem’)lgm)(gm’l 

m,m’=* 
( 5 . 7 )  

where a factor (:)l(e /I p I/ g)I2 is suppressed (can always be absorbed in 5 , ) .  In equation 
(5.7) the coherences (e*laleT) appear. We already found that in the steady state 6 
the coherences between two excited states vanish. As seen from equation (4.3), the 
emission operator R, always acts on 6, which gives in the three cases 

R*@ = 2 sin’(w,h/c)n,IgrF)(g’FI (5.8) 
ROC= ne(lg+)(g+I+lg-)(g-l). (5.9) 

Then the time-evolution operator U (  t )  acts on these expressions, which effectively 
gives combinations of U (  t )  I g*)(g* 1 .  It is straightforward to show from the equation 
of motion in matrix form that the coherences between the excited states of ~ ( t )  = 
U(t)lg*)(g*l are zero for all t .  A subsequent action of Ro then only involves the 
terms with m = m’ in equation ( 5 . 7 ) ,  so for every occurring Ro we can effectively take 

(5.10) 
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Inspection of equation (5.6) reveals that the probability for the emission of a 
* photon is proportional to the population of the excited state le*), and that after 
the emission the atom is left in the ground state IgF). Therefore, an emission of a 
* photon is accompanied by a transition I e*) -+ I gT) by the atom. Similarly, we see 
from equation (5.10) that emissions of linearly polarised photons gain contributions 
from the two processes 1 e+) -+ Ig+) and I e-) -+ 1 g-). This interpretation is illustrated 
in figure 2. On the other hand, we know from the equation of motion (for instance 
(5.3)) that transitions I e*) -+ I gT) occur at a rate n e 2 A l l / 3 ,  whereas I e*)+ Jg*) transi- 
tions happen neA, /3  times per unit of time. Every transition corresponds to the 
emission of a photon with a particular polarisation, and the corresponding counting 
rate I ,  = la Tr Rae  must therefore be proportional to the emission rate. Comparison 
with expressions (5.8) and (5 .9)  then shows that we can write the detector parameters 
5a as 

5*2 sin2(woh/c) = 9 * - f A i l  (5.11) 

50 = 770iAI (5.12) 

where the dimensionless parameters 77, have the significance of the probability that 
an emitted photon is detected. 

Finally we obtain for the intensities 

I+ =  ail ne (5.13) 

Io = 27704Alne (5.14) 

in terms of ne from equation ( 5 . 5 ) .  With (2.6) we then find 

(5.15) 

which shows that the ratio of detected circularly polarised and linearly polarised 
photons depends only on the atom-surface distance h as b,/bo, independent of any 
other parameter (laser power, linewidth, dipole moment, etc), provided every emitted 
photon is detected. This universal curve is plotted in figure 3 .  

i n  

I' 
0 I/ 5 10 

X 

Figure 3. Ratio AI,/A,  as a function of x = w,h/c, which equals the ratio of the number 
of emitted circularly polarised photons and linearly polarised photons. For h + 03 this 
ratio approaches unity. 
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6. Photon correlations 

In this section we evaluate the two-photon correlation functions fpDL ( t )  from equation 
(5.9) for all possible combinations of CY = -1,O, 1 with p = -1,O, 1. From (5.8) and 
(5.9) we observe that R,6 is a combination of projectors \g+)(g* /. These states evolve 
in time as U(t)/g*)(g*I, and the subsequent action of R, takes the excited-state 
populations of the result. Hence every fpa ( t )  can be expressed in the four functions 

gmn(t)=(en/(U(t)lgm)(gm I)len) (6.1) 

with m = * and n = *. This gmn(t)  is simply the population of I en) at time t if the 
atom is in the ground state I gm) at time zero. In terms of the g,,, the nine two-photon 
correlation functions become 

gmn(s) = lom dt  exp(-st)g,,(t) 

and from a combination of (4.4) and (6.1) we obtain the formal result 

(6.7) 

in terms of an operator inversion. In a matrix representation the operator s +iL,+ W +  
r is a 16 x 16 matrix which has to be inverted. With some algebra we find 

with 

D ( s )  = lflo12(iA+ A + s) + (A+ s)[( iA+ A + S ) ~ + A ~ ] .  (6.10) 

We notice that gmn(s) depends only on m and n through the product mn, so we can 
express the four functions g,,( t )  in terms of the two functions 

g+(t) = g**(t) (6.11) 

g-(t) = g*r(t). (6.12) 

Their explicit form (in the Laplace domain) follows from equation (6.9) by setting 
mn = 1 and mn = -1, respectively. Transformation of i + ( s )  to the time domain is 
(numerically) trivial. 
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The functions f p m (  t )  (equations (6.2)-(6.6)) are proportional to an efficiency para- 
meter qp and an Einstein coefficient, which do not represent any dynamical properties 
of the system. They merely fix the long-time behaviour fpa ( t )  + Ip for t + CO, so an 
appropriate normalisation seems to be 

(6.13) f p u  ( t 1 = bo, ( t 1 / 43. 

(6.14) 

and are independent of detector parameters. Any deviation of ( t )  from unity then 
represents a genuine correlation between the emission of an a and a p photon, 
irrespective of their detection. For correlations between circularly polarised photons 
we then find 

(6.15) 

(6.16) 

and whenever a linearly polarised photon is involved, we obtain 

f p o  ( t )  = 4 ( g + ( t )  + g - ( t ) ) /  n e .  (6.17) 

Expressions (6.15)-(6.17) in combination with the explicit forms (6.9) and (6.10) 
constitute the central result of this paper. Figure 4 illustrates typical behaviour of the 
correlation functions. 

0 1 2 3 
t 

Figure 4. Two-photon correlation function f k 3 ( t )  (curve a )  and f*,( t )  (curve b). Frequen- 
cies will be given in units of the free-space Einstein coefficient A,, time in units of 1/A, 
and the atom-surface distance h in wavelengths 2. i rc/wO. For this plot we take A = O ,  
h = 0.3, A = 1.4 and In,l = 7. Oscillations occur with a frequency lnol (Rabi oscillations). 
We notice that f*?(f) can considerably exceed its long-time value, which implies that the 
probability for the detection of a f photon just after the emission of a i photon is larger 
than the uncorrelated probability for the detection of a f photon. In other words, the first 
emission enhances the probability for the second one. The probability for the emission of 
a * photon at time f after the emission of a similar photon at time zero is always significantly 
smaller than the uncorrelated probability, as shown by curve b. These strong correlations 
between photons with the same helicity are a consequence of the fact that in between the 
two emissions a three-photon process must occur, as explained in the text. 
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7. Short-time behaviour 

Essential features of the photon correlation functions can readily be understood from 
an interpretation of figure 2 (Cohen-Tannoudji and Reynaud 1979). To this end we 
first recall that f p a  ( t )  equals the probability for the detection of a /3 photon at time t, 
after the detection of an CY photon at time zero, independent of possible detections in 
between. For long delay times t there will be many photon emissions in between the 
detections of (Y and p, and any correlation will be erased, which is expressed by 
& ( C O )  = I@. Therefore, the correlations between two successive photons are displayed 
in the short-time behaviour of the correlation functions. We have already found that 
g,(O) = 0 and from an expansion of g+(s) around s = CO we find the behaviour of g,( t )  
around t = 0. It appears that the first non-vanishing derivatives are 

g" = I %12/2 (7.1) 

g ?'( 0) = f A 11 (I C2, 1 '/ 2)2. (7.2) 
Consider first f+-(t) which is proportional to g + ( t ) .  Emission of the - photon 
corresponds to a transition from I e-) to I g+) (figure 2), and the subsequent emission 
of the + photon is brought about by a decay from I e+) to I g-). After the first emission 
the atom is in state I g+), which prohibits the emission of the second photon, for which 
the atom must be in state I e+). This implies g+(O) = 0. Before the second emission 
can occur, the state I e+) must be populated, and from figure 2 we see that this can be 
accomplished by the absorption of a single laser photon. On a short timescale, the 
probability for a stimulated transition must be proportional to the laser power 1 & I 2 ,  
which explains why g+( t )  starts to deviate from zero according to equation (7.1). Next 
we consider the emission of two photons with the same polarisation, say +. An emission 
of a + photon corresponds to a I e+) + I g-) transition so after the first + photon the 
atom is in state I g-). But now we notice that the laser cannot populate the state I e+), 

t 

Figure 5. Same as figure 4, but with parameters A = 0, h =CO, A = 1 and IC&, = 0.3. These 
typical low-intensity curves (small IfI,l) show no Rabi oscillations. The extremely slow 
approach of f*+(t) (curve b) to its long-time value reflects the fact that the emission of 
two circularly polarised photons with the same helicity requires the absorption of two laser 
photons in between. In this low-intensity picture, this second-order process in the laser 
power is very unlikely to happen. 
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starting from Is-). Absorption of a laser photon, which is the only excitation mechan- 
ism, amounts to a population of le-). Then the atom must decay to Is+), under 
emission of a - photon, and subsequent excitation by the laser will finally result in a 
population of le+). Then the second + photon can be emitted. In between two 
emissions of + photons, we have the stimulated absorption of two laser photons and 
a spontaneous emission of a circularly polarised photon, which explains the short-time 
behaviour of g- (  t ) .  Since the successive emission of two photons with the same helicity 
requires the intermediate absorption of two laser photons, this process is very unlikely 
to occur, especially for a low-intensity laser. In other words, these photon emissions 
are strongly correlated in comparison with the subsequent emission of a + and a - 
photon. This is illustrated in figure 5. Correlation functions which involve the emission 
of a linearly polarised photon ( 1  e*) +. 1 g*) transitions) always acquire contributions 
from more than one pathway in figure 2. From (6.4) and (6.5) it follows that the 
correlation between a linear and a circular photon is a combination of two diagrams, 
whereas foo(t) is determined by four processes. Because there is always a process 
which involves only the absorption of a single laser photon, every correlation with a 
linearly polarised photon behaves as g + ( t ) ,  and hence is linear in the laser power. 

8. Surface-enhanced correlations 

Fluorescent emission is drastically affected by the presence of a metal surface if the 
atom-surface distance h becomes of the order of a wavelength or less. In the limit of 
small h the inverse lifetimes approach the values 

A, + 2Af All+.O forh+.O 

as follows from (2.2) and (2.3). Most dramatic is the disappearance of the Einstein 
coefficient Ail for a parallel component of the dipole, which implies an infinite lifetime 
of an excited state (if there were not other decay channels). In this section we shall 
show how, in principle, the behaviour (8.1) can be obtained from a measurement of 
photon correlations. 

Let us first consider the situation where cy or p (or both) is a linearly polarised 
photon. Then it follows from the explicit results in § 6 that the correlation function 
equals 

Comparison with the result for a two-state atom in free space (Arnoldus and Nienhuis 
1983) shows that thisf”,(s) has exactly the same form. The lifetimes enter only through 
the combination A = AJ3  + 2A,1/3, and not as A, and All separately. If we assume 
the laser to be on resonance with the atomic transition frequency, monochromatic and 
sufficiently weak, then the Laplace inverse of (8.2) is easily found to be 

(8.3) 
For a free atom we have A = Af, but if the atom approaches the surface we find from 
(8.1) 

A +  AJ3 = 2Af/3 for h +. 0 (8.4) 
which is smaller than Af.  Therefore, the typical correlation time (A/2)-’ is enhanced 
in the vicinity of the metal. 
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Far more pronounced is the change in correlation between circularly polarised 
photons with the same helicity. We set again A = A = 0, but now we assume that the 
laser field is relatively strong (Inoi >> A ) .  Then the correlation functions will oscillate 
with the Rabi frequency IRol. If we subsequently average over the fast oscillations (in 
comparison with the inverse lifetime), we find 

= 1 -exp[-(2A11/3)tl. ( 8 . 5 )  

(Notice that there is no square, as in (8.3).) Hence the typical correlation time equals 
(2AI1/3)-l which can become arbitrarily large if the atom approaches the surface. This 
behaviour is depicted in figure 6. 

'"r 

0 2 . 5  5.0 
t 

Figure 6. Plot of the two-photon correlation function f**( I )  for A = 0, A = 0.5 and IC&, = 10, 
for different values of the atom-surface distance. In curve a we have h = 1, and curve b 
represents h =0.1, corresponding to an atom very close to the surface (although still far 
away in comparison with its own dimensions). Averaged over the fast Rabi oscillations, 
the exponential approach to the long-time values is governed by the correlation time 
(2A11/3)-', as follows from equation (8.5). For h = 1 and h = 0.1 we find from equation 
(2.3) that All  = 0.96 and A,, = 0.041, respectively. 

9. Conclusions 

We considered fluorescent emission by a laser-driven atom near a mirror and studied 
the temporal correlations between photons. It was shown that advantage can be taken 
of a polarisation-dependent measurement in such a way that only photons which are 
emitted in a specific transition are observed. Then correlations between these photons 
are governed by the Einstein coefficient for that particular transition. Already the ratio 
of the uncorrelated intensities of circularly and linearly polarised photons appeared 
to be determined by the ratio of All and A,, and not by any other optical parameters. 
A problem here is that this ratio is multiplied by a ratio of detector parameters, which 
only disappears if the efficiency equals unity. This would require a 2rr aperture 
(emission in a half space), which is probably not feasible in an experiment. 



Correlations between photons in resonance jluorescence 445 

More promising are the normalised correlation functions fpa ( t ) ,  which are indepen- 
dent of detector parameters. In other words, we can simply calibrate the intensity on 
fOa(m) = 1. We elaborated on the situation of a j ,  = j p  = 4 transition with an incident 
laser field propagating parallel to the surface and linearly polarised. The photon 
correlations for every combination of linear and circular detection were evaluated, 
and it appeared that the correlation time increases substantially if the atom-surface 
distance is diminished. In the case that at least one of the two photons is linearly 
polarised, the correlation time attains a value equal to times its value for a free atom. 
For the situation of subsequent detections of two circularly polarised photons with 
the same helicity, the correlation time approaches infinity for h + 0. We conclude that 
the presence of a metal surface enhances the correlations considerably, which should 
be amenable to observation. Figure 7 illustrates the enhancement for the two aforemen- 
tioned cases. 

A measurement of T**( t )  would essentially determine A,, , according to (8.5). The 
obvious advantage is that All changes significantly, and possibly by some orders of 
magnitude. The question can be raised as to whether it is feasible to design a similar 
geometry in which A, plays the crucial role. To this end we recall that the essential 
correlation in f**( t )  is brought about by the necessary intermediate photon, which is 
emitted in the transition I e-) + I g+) for I++( t )  and in [e+)  3 1 g-) for f..-( t ) .  Now 
suppose we irradiate the atom by a laser in normal incidence (along the z axis) and 
with linear polarisation. Then it follows from (3.9) that photon absorptions only cause 
transition from I g-) to 1 e+) and from 1 g+) to 1 e-). We leave the detectors and polarisers 
the same. Assume the first photon (at t = 0) is a + photon. Then the atom is in state 

0 5 10 
X 

Figure 7. Inverse correlation times for the detection of two polarised photons as a function 
of x = w,h/c.  Curve a represents A/2, which pertains to the case where at least one of 
the photons is linearly polarised (equation (8.3)). Curve b denotes 2A11/3, which is the 
inverse correlation time for T**(t) (equation (8.5)). For h + 0, curve a approaches i, which 
is a factor of 1.5 less than its value for free atoms (dotted line at 4). Curve b, however, 
tends to zero for h -* 0, which implies an infinite correlation time. The vertical dotted lines 
indicate the points where the atom-surface distance equals a tenth and a whole wavelength, 
which corresponds to curves b and a in figure 6, respectively. It is seen from this figure 
that for h less than about 20% of a wavelength, the correlation times are always larger 
than their values for free atoms, whereas for larger distances the correlation times oscillate 
around their values for h + W. Therefore, observation of surface-enhanced correlations, 
or equivalently, suppressed spontaneous decay, requires atom-surface distances of less 
than 20% of a wavelength. 
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I g-) at t = 0. Laser excitation, which is necessary for a subsequent emission, can then 
only populate I e+). Spontaneous decay afterwards produces a + photon or a 0 photon. 
Emission of a - photon, however, is prohibited since I e-) is not populated. The only 
way to obtain a - emission is after a 0 emission (le+)+lg+) transition) and a 
laser-photon absorption ( I  g+) + 1 e-)). Then the inevitable intermediate spontaneous 
emission is a 0 emission, with Einstein coefficient AJ3.  Therefore, this configuration 
yields correlations with AJ3  in f&( t ) .  
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