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Interaction of a small system .S with a large reservoir R amounts to thermal relaxation of the
reduced system density operator pg (). The presence of the reservoir enters the equation of
motion for pg (¢) through the reservoir correlation functions f;, (7) (defined in the text),
which decay to zero for 7— c« on a time scale 7.. Commonly, this 7. is much smaller than the
inverse relaxation constants for the time evolution of pg (¢). Then a series of approximations
can be made, which lead to a Markovian equation of motion for pg (¢). In this paper the
assumption of a small reservoir correlation time is removed. The equation of motion for pg ()
is solved, and it appears that the memory effect, due to 7. £0, can be incorporated in a
frequency dependence of the relaxation operator I'(w). Subsequently, (unequal-time)
quantum correlation functions of two system operators are considered, where explicit
expressions for (the Laplace transform of) the correlation functions are obtained. They involve
again the relaxation operator (), which accounts for the time regression. Additionally it is
found that an initial-correlation operator Y (w) arises, as a consequence of the fact that the
equal-time correlation functions do not factorize as pg () times the reservoir density operator.
It is pointed out that the frequency dependence of f(w) and the occurrence of a nonzero Y ()
both arise as a result of 7, £0, and should therefore be treated on an equal footing. Explicit
evaluation of f(w) and T(w) shows that their matrix elements can be expressed entirely in

fu (@), just as in the Markov approximation. Hence no essential complications appear if one
should go beyond the limits of a small reservoir correlation time 7.

|. INTRODUCTION

In many practical cases the equation for the evolution of
the density operator p(¢) of a quantum system assumes the
general form

Most crucial for the development of a relaxation theory
is the concept of a large reservoir. If the system S were not
present, the reservoir would be in a (thermal equilibrium)
state pr , which obeys

[Hepr] =0, Bk =pr» Trxpr=1, (1.3)
and it is assumed that the interaction between .S and R does
not substantially affect this reservoir state. Or more precise-
ly, the state p, changes a little due to the interaction with S,
but the effect on the time evolution of the system density
operator ps (t) is negligible. In the quoted example this im-
plies that an atom in complete vacuum should decay in the
same fashion as an atom in space with a single photon pres-
ent. As a consequence of this large-reservoir assumption, we
can factorize the density operator as

p(t) =ps(D)pg, (1.4)

iﬁ%p(t)= [Hj +He +Hip(D], (LD
where H ; and the H; pertain to separated components .S
{ = system) and R ( = reservoir) of the entire configura-
tion, and H ; denotes an interaction between .S and R. Prob-
ably the most familiar example is spontaneous decay of an
excited atom in empty space. Then, H § equals the atomic
Hamiltonian (internal structure), Hy represents the elec-
tromagnetic field, and H } is the dipole coupling between the
atom and the electric component of the radiation field,
which causes the spontaneous transitions. Since Hy has a

large (infinite) number of eigenstates, an exact diagonaliza-
tion of the complete Hamiltonian H § + H, + H j isintrac-
table. The interest is, however, in the behavior of the atom, as
it is determined by its interaction with the radiation field
(vacuum or black-body radiation). Therefore, one intro-
duces the reduced atomic (system) density operator by

ps(t)"—’TI'R P(t), (L.2)

where the trace runs over all states of the radiation field (the
reservoir). The issue of reservoir, relaxation, or heat-bath
theory is then to derive an accurate equation of motion for
ps (1), in which the properties of R only enter as simple (and
explicit) parameter functions. In the theory of spontaneous
decay these are the Einstein coefficients and the Lamb shifts.
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in places where the value of p(¢) determines the strength of
the interaction.

In order to derive a relatively simple equation for ps (¢),
a sequence of additional approximations is usually made,
which rely on the fact that the reservoir correlation time 7, is
short in comparison with the inverse relaxation constants 1/
I". The idea is as follows. One derives an equation for ps ()
which contains a quantity of the form (R(#)R(0)), withR a
typical reservoir operator (for instance the electric field),
and where the angular brackets indicate an average with the
density operator py, €.8.,

C)y=Trgpr (). (1.5)
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Due to the many eigenvalues #iw of H, and the large cutoff
frequency ., the function (R(z)R(0)) will decay to zero
on a time scale of the order of 7. ~ 1/w, . On the other hand,
as a result of the interaction between S and R, the system
density operator pg (¢) will decay on a time scale 1/T" (with
I" an Einstein coefficient, for instance), and in many cases
the relation

I'r, <l (1.6)

holds. The validity of (1.6) allows a series of approximations
(see the Appendix), commonly referred to as the Markov
approximation.

For spontaneous decay the restriction (1.6) is rigorous-
ly justified, and the equation of motion for pg (¢) is known
for more than a decade.'® However, not every reservoir has
a short correlation time. For instance, an adsorbed atom or
molecule on a surface interacts with the substrate through
phonon coupling (crystals) or electron-hole pair creation
(metals). In the case of physisorbed atoms on a harmonic
crystal, the Hamiltonian H § accounts for the kinetic and
potential energy of the atom. The potential supports bound
states, separated by ~ 10°~-10® MHz (infrared), which is res-
onant with the thermal excitations of the crystal (phonons).
Mechanical coupling (vibrations) between the adsorbed
atom and the lattice atoms gives rise to thermal relaxation of
the adbond system.*™ Typical relaxation constants acquire
an order of magnitude of 10°~10° MHz, whereas the cutoff
frequency (Debye frequency) is of the order of 10° MHz.
For electron-hole pair formation the situation is even worse,
where we have I'7, R 1 so that a Markov approximation can
never be justified.”

There exist many relaxation theories. Most notable are
the projection techniques,®'° a Langevin formulation,” and,
as we adopt here, a reservoir approach.''~!? A feature of the
quoted theories is that they all lead to the same result as soon
as the Markov approximation is imposed. Several attempts
have been undertaken to drop this Markov assumption.'*'¢
To the best of our knowledge, however, a treatment free of
inconsistencies and leading to explicit expressions (rather
than formal expressions which cannot be evaluated) was
never formulated.

Il. RESERVOIR INTEGRAL

In this section we set up the notation and derive an inte-
gral of Eq. (1.1), which is appropriate for imposing the res-
ervoir assumption. The first step is a redefinition of the sys-
tem Hamiltonian. We recall that the interaction
Hamiltonian H | is an operator in .S + R space, and there-
foreits reservoir average (H ;) will be an operator in.S space.
In order to eliminate so-called secular terms, we define the
new system and interaction Hamiltonians by

Hy=H;+(H}), 2.1
H,=H;—(H}), (2.2)

and the advantage of this rearrangement comes from the fact
that the reservoir average of H, equals zero. Explicitly,

(H;) =0. (2.3)
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A compact and transparent representation of reservoir
theory can be obtained with a Liouville-operator formalism.
If we introduce the Liouvillians L, by

L,o=#%"'[H,0], a=S8R1, 2.4)

which defines their action on an arbitrary operator ¢ in
S + R space, then the equation of motion (1.1) becomes

. d

lEp(t) =(Ls+Lg+L;)p(). (2.5)
For later purposes we mention a few properties of the Liou-
villians. First, Lg and Lz commute, since they act on a dif-
ferent part of Liouville space. Second, L stands for a com-
mutator, which implies the relation

Trg Lro=0, (2.6)
for any 0. From [Hy.pr ] =0, Eq. (1.3), we find
e ""pr =pr, 2.7)

and due to the shift of the interaction over its average, L,
obeys

Trx L, (0spr) =0. (2.8)

Here and in the following, o will indicate an arbitrary oper-
ator in S space.
An integral of Eq. (2.5) reads

—i(Lsg+ Lp)(t—1¢,

p(t) =e 'p(t5)

13
—iJ dt'e” "ESTERUTIOL 527y, (2.9)
1o

and substitution into Eq. (2.5) then yields
. d —i t— 1
lEp(t) = (Ls +Lg)p(t) +Lse (Es v fn 0)P(to)

t
- iL,f dt' e "ESTERCTIOL h(e7y,
° (2.10)

which is an exact integral of the equation of motion. If we
subsequently take the trace over the reservoir states, the left-
hand side becomes i dpg (t)/dt, which equals the rate of
change of the system density operator due to the free evolu-
tion [the term Lsps (¢) on the right-hand side] and the cou-
pling to the reservoir (terms proportional to L, ). Hence the
integral in Eq. (2.10) accounts for the relaxation of pg (¢),
and its value is proportional to the coupling strength. There-
fore we can adopt the reservoir assumption, Eq. (1.4), on
p(t") in the integrand. We then find the equation of motion
for pgs (2) to be

d — i t—
i—ps (1) =Leps (1) + Trg Lye™ "5 1091

t
. — i(L, L —t'
—zTrRL,fdt'e s+ bR =1D
LY

XL;(ps(t")pr), (2.11)

for £>1,. It is important to note that the initial value p(z,) of
the density operator (not the system part) remains present
in the equation of motion for pg (1), in general. Equation
(2.5) determines the time evolution of p(¢) for 11, and the
solution of Eq. (2.5) is fixed as soon as an initial value p(¢,)
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is prescribed. Since p(?,) is not determined by the equation
of motion, a further specification of the initial state p(#,) is
necessary.

lil. DENSITY OPERATOR

For finite memory-time reservoirs the choice of p(¢,) is
more than a matter of convenience. If the system has been in
contact with the reservoir prior to #, then p(#,) is deter-
mined by its time evolution in the recent past # < ¢,, and con-
sequently the value of p(#,) is no longer arbitrary. As a solu-
tion, we simply define the instant of time ¢, as the time point
at which the interaction L; is switched on. We can then
always take 7, to be arbitrarily far into the past. For ¢<¢, the
reservoir is in its thermal-equilibrium state g, and the sys-
tem density operator ps (¢) evolves independently of the res-
ervoir. Therefore, we have for <z,

p(t) = ps ()P 3.1)

Substitution into Eq. (2.11) and applying Egs. (2.7) and
(2.8) then shows that the term with p (#,) vanishes identical-
ly, due to the shift of the interaction Hamiltonian over its
average. Then the equation of motion for pg (#) becomes

. d ;
’;;Ps(t) = Lgsps(2) —iTrgL,

t
X [ drem B R OL o)
’ (32)

for t>1,.
Solving Eq. (3.2) is most easily done in the Laplace
domain. If we define

ps (@) =f dt e~ %p (1), (3.3)
then the transfoormed equation of motion reads
(@ — Ls)ps (@) = ips (to) — i Trg L,
X [i/(@—Lg—~Lg)]
XLy ps(@)pr), (3.4)
with solution
ps(w) = [i/lw — Ls + iT(@))]ps (%) - (3.5)

Here we introduced the relaxation operator f(w) as
T(w)os =Trg L;[i/(@ — Ls — Lg) L (0spg)
(3.6)

which can equivalently be written as

F(w)og =Trx L, J dr T ITL (ospr)
0
(3.7)

From Eq. (3.5) we see that o5 (w), and thereby ps (¢) for
>, is determined by p (¢,) only, and not by p (¢) for 1<,
This is of course a result of assumption (3.1). The memory
in the time evolution of pg (¢) is displayed in the frequency
dependence of ['(w). In the Appendix we show that T"(w)
acquires a constant value (@ independent) in the Markov
approximation.
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From Eq. (3.7) we notice that ['(®) has the form of a
Laplace transform

T'(w) =f dr e T'(7), (3.8)
0
where I'(7) is given by
T(r)os =Trg Lie " 7L (05pr) , (3.9)

for 7>0. Rewriting the equation of motion (3.2) in terms of
I'(7) gives

z‘gt-ps(t) = Lgps (1) —ij dt' T(t—t")ps(t"),

(3.10)

which reveals that the time width of T' () (its decay time for
72>0) equals the memory time of the reservoir-interaction
term. It is the width of I'(7) which is usually termed the
reservoir correlation time 7, . Then it follows from Eq. (3.8)
that the frequency width of r (@) is of the order of 1/7., and
for 7, =0, T' () becomes independent of .

The time evolution of pg (¢) for ¢>t, will have little sig-
nificance in general, which is partially due to the factoriza-
tion at ¢ = #;. Due to the coupling to the reservoir, the den-
sity operator pg (#) will relax to a steady state (thermal
equilibrium)

Ds =}ir2ps(t) (3.11)
on a time scale 1/T", as mentioned in the Introduction. Here,
I" denotes a typical matrix element of (@) [not of T(7)].
From the identity

ps =1lim — iwpg(w) (3.12)
w-0
and Eq. (3.5), we find the equation for pg to be
(Ls —iT(0))ps = 0. (3.13)

This shows that the long-time solution of pg () is deter-
mined by I'(w) at @ = 0. Furthermore, we notice that the
dependence on the initial value ps (#,) has disappeared in
Eq. (3.13), which reflects that the memory of the prepara-
tion of the system at 7, is erased.

IV. CORRELATION FUNCTION

Measurement of the steady-state density operator pg of
a physical system is tantamount to the determination of its
relaxation constants, which are the matrix elements of I'(0),
as displayed in Eq. (3.13). Dynamical properties of the sys-
tem in contact with the reservoir, however, are reflected in
the time evolution of pg (¢) before it reaches its steady state
Ps. In view of Eq. (3.5), this transient behavior of pg () is
governed by the frequency dependence of the relaxation op-
erator I (w). Besides the fact that a density operator is not
amenable to direct observation, we also see from Eq. (3.5)
that the details of pg (#) depend on the preparation of the
system at ¢t = ¢,. Obviously, it is impossible to fix pg(7,)
(say, the wave function of an atom) at a single instant of
time, and subsequently measure its evolution for ¢ > ;.

A standard method of obtaining dynamical information
about a system is by observation of steady-state correlation
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functions of system operators, say X and Y. If we take arbi-
trarily ¢, as the instant of time at which the Schrédinger and
Heisenberg pictures coincide, then the time dependence of X
is given by

X(t) =L 9X, 4.1

where L indicates the Liouvillian Lg + L, + L; of the en-
tire system. Then X(#,) = X is an operator in .§ space only,
but for £ > #,, X(2) is an operator in S + R space, due to L;.
Hence the time evolution of X(#) carries information on the
interaction with the reservoir. The correlation function of
two operators X and Y is defined as the expectation value

(XY (1)) =Trp(te) X ") Y(2) . (4.2)
The double-bracket notation indicates an average with the
full density operator of S + R, rather than withp, only [ Eq.

(1.5)]. Transformation of Eq. (4.2) to the Schridinger pic-
ture gives

{X )Y ))) =Tr Ye - Dp(t)X), (4.3)
or equivalently
(X (@) Y())) =Tr Xe ™ =~ (Yp(1)). (4.4)

We notice that the initial time ¢, has disappeared in Egs.
(4.3) and (4.4), which already removes the ambiguities as-
sociated with the preparation of pg (¢,). A steady-state cor-
relation function is now defined as ({X (¢ ") Y(#)}) with>¢,,
t'> s, and ¢ — t' fixed. Then the system is in state g, which
is time independent and a solution of Eq. (3.13). The time
regression of the correlation functions (their z — ¢’ depend-
ence) is governed by the same exponential that determines
the time evolution of p(¢), and therefore we can extract dy-
namical properties of the system by an observation of the
steady-state correlation functions.

Commonly, time regressions are not measured directly.
For atoms or molecules on a solid substrate, for instance, one
determines the spectral profile for the absorption of low-
intensity monochromatic laser radiation with frequency w.
The spectral distribution as a function of @ and in the steady
state is then given by expressions of the form

Iy =1lim [ dt’e= = 2(X) YD),

t— oo J¢

(4.5)

which will further be referred to as the spectrum. It is the
goal of this paper to evaluate I(w) for a system in interaction
with a finite memory-time reservoir.

V.SPECTRUM

From Eq. (4.5) we observe that we need the correlation
function for ¢'>t, and therefore the representation (4.4) is
most suitable. Then the occurring exponential is the same as
for the time evolution of p(#). If we introduce the Hilbert-

space operator (Liouville-space vector) y

A(t' 1) = e - (Yp(D), (5.1)
then the correlation function can be represented by
(X@)Y(D))) = Trs XAs(2',0), (5.2)

which only involves the system part A (¢',¢) = Trp A(2',2).
In terms of the Laplace transform with respect to ¢/,

Ag(o,0) =f dt’ e P4 (2',), (5.3)
the spectrum attains the form
I(w) = lim Trg XAs(w,1) . (5.4)

{— o0

Differentiating Eq. (5.1) with respect to t’ yields the
equation of motion for A(1',¢),

i(—i‘ft’—,Au:t) — (Ls+Lg + LA , (5.5)
which has to be solved for ¢ ' >¢, with initial value
ALty = Yp(1). (5.6)

Equation (5.5) is identical to Eq. (2.5) for p(¢), and inte-
grals can be found in the same way. The difference between a
density operator and a correlation function is that for p(2)
we can choose the initial value p(¢,) arbitrarily, whereas for
A(z',t) theinitial value is unambiguously given by Eq. (5.6).
This reflects the fact that 4(¢',t) is essentially a two-time
quantity. Its regression from ¢ to ¢’ is governed by Eq. (5.5)
and its dependence on ¢ enters through the initial condition,
Eq. (5.6). The memory in the time regression, due to the
finite reservoir correlation time, is of course the same as for
the density operator and can be accounted for by the fre-
quency-dependent relaxation operator (w), as we shall
show below. As a second effect of a finite 7, the density
operator p(¢) in the initial value will carry a memory of its
time evolution in the recent past. It is tempting to argue that
we consider the steady state f — o0, 50 that the density opera-
tor p(¢) is constant in time. By the large-reservoir assump-
tion we know that the reservoir remains in the state g,
whereas the system is in state g for £— oo . This would imply
the replacement p(?) —»pspr in Eq. (5.6), which in turn
would eliminate the explicit f dependence of 4 (¢ ',¢), making
the limit £ « in Eq. (5.4) trivial. We shall show that this
procedure cannot be justified if 7 is finite.

Since Eq. (5.5) is identical to Eq. (2.5) for pg (#), we
can derive the appropriate integral along the same lines. The
analog of Eq. (2.11) is

. d ’ ' ~i - . : w = (Lg+Lg)(t' —1" P
z:i?As(t ) =LgAg(t',t) + Trg Lye ™ "B 0 =0(y5(1)) — i Trg L,I dr" e  EsTEROW IO (4 (2" ,0PR)

(5.7

which contains p(¢) explicitly. Now we can substitute the right-hand side of Eq. (2.9) for p(¢) and take for p(z,) the value of

ps (1)pr . Then Eq. (5.7) becomes
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94 (t'1) = LyAg(t',0) + Trg Lye "5 iR 0Ly e ™ BT B0 070 o (1))
dr’

1
, —i(Ls+Lp)(t'— 1) —iLs+Lp)(z—1") "
—iTrp Le™ st re LYJ- dt" e Lip(t")
fo

" i et "o\
—iTrg L,f dt” e ST (4 (17 0B,
t

where we introduced the Liouvillian L by
(5.9)

in order to avoid notations with too many brackets. In the
second term on the right-hand side of Eq. (5.8), the expo-
nentials with L act only on pg, because L, commutes with
Lg and L. Therefore they cancel, according to Eq. (2.7).
The remaining two exponentials and L, affect only pg (#,),
and the result is some operator o in S space. With Eq. (2.8)
we then find that the whole term is identically zero. Consid-
ering the third term on the right-hand side, we notice that it
has the form of a reservoir integral, as in Eq. (2.10), which
implies that we can factorize p(¢ ") here. Then we define a
“density operator” pgg (¢) of S + R space by

7
por ()= [ dr" e T sy,
o

Lyos = Yoy,

(5.10)
which allows us to write Eq. (5.8) as

. d . ,
lzt—lAs(t ,t) =LSAS(t ,t)

. —iLg+Lg)(t'— 1)
—iTrg Lye” stin Lypsg (1)
¢ i(L L ! ”
—iTrg L,J di" e (st R0
t

X Ly(As(t",t")pr) - (5.11)

Next we take the Laplace transform of Eq. (5.11), recalling
that

As(t,t) = Lyps(2), (5.12)
as follows from Eq. (5.6), and rearrange the terms. We then
obtain
i

A4 w,t) = =
s w—Lg + il (w)

[LYPS(t)

i
wo—Lg—Ly
The factor in front of the curly brackets is the same as in Eq.
(3.5), and it represents the time regression from ¢ to ¢’ of
Ag(t’,t) . The first term inside the curly brackets, L, ps () ,
corresponds to a factorized initial state. If we would have
replaced 4(1,t) = Yp(t) by Y(ps(¢)pr), then it is easy to
see that the second term on the right-hand side of Eq. (5.7)
would have disappeared, and thereby the second term in
curly brackets in Eq. (5.13). Conversely, the term with
Psr (t) in Eq. (5.13) accounts for the correlations between S
and R in p(¢), which are present at the initial time for the
time evolution of A(¢',¢) from ¢ to¢'.

—Trg L; Lyper (t)] . (5.13)
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(5.8)

—

The explicit time dependence of 4 (w,t) enters through
ps (¢) and pge (¢). If we denote their steady-state values by
an overbar, then the spectrum, Eq. (5.4), becomes

i

I(w) =Trg L -

ST o —Lg +iT (o)

_ ) -
xX1L —Trg L; ————— L )
{ YPs R Ia)—Ls——-LR YpSR]
(5.14)
with

Lyos = Xos. (5.15)

Expression (5.14) involves the system-reservoir state
Psr» which might seem cumbersome. From Eq. (5.10) we
find the Laplace transform of pgz (1) to be

Pse (@) = [i/(@ —Lg — Lg) |L{ps(@)pr), (5.16)
in terms of pyo from Eq. (3.5). Then the steady-stae pgy
follows from the identity (3.12), which gives

Psg = [i/(i0* —Lg — L)L, (Bspr) - (5.17)
Here, the notation /0* indicates a small positive imaginary
part, which is necessary to assure the convergence of La-
place-transform integrals, or equivalently, the existence of
the inverse of 0" — Ly — L. In the next section we show
how to evaluate the right-hand side of Eq. (5.17). If we de-
fine an operator T((o) by

= i
Y(w)os =Trg L; —m8
(@)as R L s — Ly
1
Y0t —Ls— L,
then the spectrum attains the form
I(@) =Trg Ly [i/(@ — Ls + il (0))](Ly — i Y (@))Bs.
(5.19)
Equation (5.19) is the most condensed and general repre-
sentation of the result of this paper. The finite memory time
of the reservoir appears as a frequency dependence of the

relaxation operator I' (w), and as a nonvanishing initial-cor-
relation operator Y (w).

XL (5.18)

L;(ospr)

VL. ¥ # INTERACTION

Although the result (5.19) is appealing and explicit, the
occurring operators T'(@) and ¥ (@), which represent the
interaction of the system with reservoir, might look awk-
ward in their definitions, Egs. (3.6) and (5.18). Especially
the reservoir Liouvillian Ly in denominators and the ap-
pearance of {0* in Eq. (5.18) might seem to make an explicit
evaluation of T (@) and Y (@) intractable. Such is, however,

H. F. Arnoldus and T. F. George 2735

Downloaded 11 May 2004 to 130.18.54.201. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



not the case, as we shall show in this section.

Obviously, an elaboration of I~“(a)) and Y‘(a)) requires
additional specifications of the interaction Hamiltonian H;.
It will turn out to be sufficient to assume the form

H,:ﬁZYk%k, (6.1)
k

with %, (£, ) apureS (R) operator. The form (6.1) per-
tains to most practical situations we have encountered. In
the case of fluorescence, ., signifies the k th Cartesian com-
ponent of the atomic dipole moment, and for adsorbates on a
substrate the subscript k¥ takes on two values, corresponding
to the two terms in the binding (Morse) potential. In fact,
the form (6.1) for H, can always be enforced by an expan-
sion in matrix elements.

Evaluation of the relaxation operator I~“(a)) starts from
its representation (3.9) in the time domain. We expand the
two L,’s as commutators, which gives rise to four terms.
Then we insert A, from Eq. (6.1), and we notice that every
factor is an operator in .S or R space only. Combining the R
operators and taking the trace over the reservoir states then
shows that the R contribution can be accounted for by a
single complex-valued function

Su(m) = <9?kekiLRT~9?1>, (6.2)

which will be called the reservoir correlation function. We
find

D(r)os = SLie” " (fu (1) Fras —fh(Nos F),
ki
(6.3)

with

Lios=[S105] . (6.4)
Expression (6.3) only involves the system operators ., and
the Liouvillian Lg for the free evolution of the system. The
reservoir enters via the parameter functions f;, (7), which
can be found as soon as a particular reservoir is prescribed.
For a harmonic crystal, for instance, the reservoir correla-
tion functions are given analytically in Ref. 17.

The initial correlation operator Y (@) from Eq. (5.18) is
the Laplace transform of

—iLs+L
Y(r)os = Trg Le” s+ i=7

XLy[1/(0% —Lg — L)L, (ospr) -

(6.5)

First we recall that the notation /{0 should be read as

1
—— L, (o
07 Ly L PR
= —{ lim dre BTIRTL (04pR)
w-i0% Jo

(6.6)

Then we insert the form (6.1) for the interaction and rear-
range the S and R terms. We then obtain for Y(7)

Y(r)os =i Lie™ "L, f dr'e” "
ki [

X(fur+ 1) 05 —fhr+ 7)o 5)),
(6.7)
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where the reservoir is again entirely incorporated in the
functions f;, (7) . Since the f;; (7)’s decay to zero sufficiently
fast for 7— o, we omitted at this stage the /0% in the right-
most exponential.

VIl. LAPLACE TRANSFORM

Before we can take the Laplace transform of Egs. (6.3)
and (6.7), we must work out the exponentials. Eigenstates of
the system Hamiltonian will be denoted by |a,a), where a
indicates the energy and a any degeneracy. By definition
they obey

Hgla,a) = fiw, |a,a). (7.1)

With respect to its own eigenstates we can write Hg as

H, = E fiw, |a,a) (a,a| = ZﬁwaPa, (7.2)
with
(7.3)

P, =3 laa){aal,

the projector on the subspace with energy #w,. From the
orthonormality of the states |a,az) we have

Pan =5abPa7 (74)

and from the completeness of the set |a,a) we find the clo-
sure relation

SP, =1

Then it is an easy matter to expand the exponential
exp( — iLg7) in projectors, which gives

(7.5)

e "oy =Ye "“PogP, (7.6)
ab
in terms of the level separations
A, =0, —o,. (7.7)

Next we substitute Eq. (7.6) into Eq. (6.3) and evaluate
the Laplace transform. We obtain

L) =Y L Y P fu (Bpa + @) 105
ki b

~fi( — A, _w)asfk)Pb’ (7.8)
in terms of the Laplace transform f;, (w) of f;, (7) . Because
L, equals the commutator with .%;, the right-hand side only
involves operators ., and projectors. If we insert the clo-
sure relation (7.5) in various places in Eq. (7.8), we imme-
diately find the matrix representation of f(w) in terms of
matrix elements of ;. The result (7.8) is the most compact
representation of the explicit form of f‘(w).

In the very same way we find the Laplace transform of
Y(r) from Eq. (6.7), although with considerably more ef-
fort, which is due to the double integral (over 7 and 7'). The
result is
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xl mm
X{(fi (Bpa) = Fie (Bpe + @))F k0
— (L~ D)

— Ffh(— By — 0))0s S }P,,

P,YP,

(7.9)

which has a striking resemblance with Eq. (7.8). Most re-
markable is that Y (@) can again be expressed in the reser-
voir correlation function fu (@) which also determines
I'(w), and, as shown in the Appendix, the relaxation opera-
tor in the Markov approximation. The distinction is that the
functions £, (@) occur with different arguments.

If @ equals a level separation A, = — A,_, then the
denominator of the first factor under the triple summation in
Eq. (7.9) becomes zero. For w=A, we have
A, +o=A,,, and hence the difference of the two func-
tions f;, in curly brackets also approaches zero. In the pro-
cess of deriving Eq. (7.9) we found that this feature does not
constitute a problem. The limit is simply

. 1 7
T B ) Tl )

d - .
= ——fr(@), inw=A4,, (7.10)
do
and there is no singularity or discontinuity if » passes across
a resonance.

Viil. CONCLUSIONS

If the decay time 7, of the reservoir correlation function
S (1) for 7> o is not small in comparison with the relaxa-
tion times 1/T", which are determined by the same function
[see Eq. (7.8)], then a Markov approximation cannot be
correct. In this paper we imposed no limits on 7.. We only
assumed that the system S is small in comparison with the
reservoir R. The finite value of 7, amounts to a memory in
the time evolution of the density operator, which is reflected
in a frequency dependence of the relaxation operator ' (w).
Correlation functions of system operators depend on two
times, ¢ ' and . The regression from ¢ to ¢’ exhibits the same
memory effect as the time evolution of the density operator.
Additionally, the equal-time correlation function, which is
the initial value for the time regression, carries a memory to
the recent past. It appears that this second phenomenon
could be accounted for by an initial correlation operator
T(w) in the expression for the spectrum /().

Frequency-dependent relaxation operators are widely
applied in the literature. Their Laplace inverse I' (7) is some-
times called a memory kernel, because it is the finite time
width of I"(+) which brings about the memory in the time
evolution, as is most obvious from Eq. (3.10). Initial-corre-
lation operators, however, are rare.'® Despite the fact that
the frequency dependence of T () originates from the same
memory mechanism which amounts to a nonvanishing
Y (), the latter is usually not found. As pointed out in the
derivation of 'T(a)), the disappearance of T(w) is a conse-
quence of a factorization of the initial value or state, which
cannot be justified in general.
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APPENDIX: MARKOV APPROXIMATION

It is illuminating to compare the results of the present
paper with their equivalents under the Markov approxima-
tion. Since we already have Eq. (2.11) we can start here.
First, we state that we are not interested in a time evolution
of ps (¢) on a time scale 7., which implies that we can factor-
izep(t,) asps (,)px - In this fashion we discard the memory
of the initial state to its past, which immediately gives
Y (w)=0, or equivalently, the second term on the right-
hand side of Eq. (2.11) is zero. Second, we know that if we
work out the integral in Eq. (2.11), we find reservoir corre-
lation functions f;, (¢ — t '), which decay to zero on a time
scale 7,,. Therefore, the major contribution to the integral
comes from ¢t — 7, St '<¢. Because we impose the condition
I'7. €1, the density operator pg (¢ ') in the integrand is not
affected significantly by the relaxation process on this small
time interval. Then we can replace pg (¢') by its free evolu-
tion

—iLg(t'— 1)

,Ds(t/)=e Ps(t), (AD)
and subsequently take pg (#) outside the integral. Third, ac-
cording to the first assumption we can take t — £,> 7., which
gives in combination with the fact that the integrand is only
nonzero on a time interval 7, that we can replace ¢, by minus
infinity. Combining everything then yields

i oot = (Ls — Ty )ps (1) (A2)

dt
with

Tyos =Trg L, j dre "BSTIRTL (0 pR) .
0
(A3)

The Laplace transform of Eq. (A3) reads

Ps(w) = [i/(a’—Ls +iFM)]Ps(t0) s (A4)
and comparison with Eq. (3.5) then shows that Iy, is the
Markovian equivalent of I' (@), and indeed, the frequency
dependence has disappeared.
_ There exists an interesting relation between I'), and
I' (w), which can be found as follows. In Eq. (3.9) we substi-
tute exp(iLg7)og for og and integrate the result over 7.
With Eq. (A3) we then obtain

I, = f dr T(r)e™, (AS)
0

as an operator identity. Then we notice that Eq. (3.8) can be
inverted as
r(r) =—1-J dw e~ (o) , (A6)
2r J_ &

for 7> 0. Substitution into Eq. (AS) and performing the 7
integration then leads to
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T, =lf do (o) ——.

A7
2 Li—w (A7)

With the projectors of Sec. VII we can write Ly — w as

(Ls_a))a'szz(Aab—a))PaUSPb, (A8)
ab

and taking matrix elements of both sides gives

(a,a|((Ls — @)os)|bB ) = (A, —w){a,x|os|bB ).
(A9)

This shows that the Liouvillian Ly — w is diagonal with re-
spect to the eigenstates of H, and that its matrix elements
are A, — . Therefore, its inverse 1/(Lg — @) has corre-
sponding matrix elements 1/(A,, — @), which gives the ex-
pansion of 1/(Lg — @) in projectors as

1 1
T 05 =3 ———P,0sP,.
ab Qgp —

o ~ (A10)

If we insert this into Eq. (A7) and remember the general
property

—l—f do' —— 5w =§(0) (A1l)
27 J - w w—w
for any Laplace transform g(w), we finally obtain
FMUSZZf(Aab)(PaUst) . (A12)
ab

Another way to derive Eq. (A12) is by substituting the ex-
pansion (7.6) for exp(iLg7) into Eq. (A5) and performing
the 7 integration. Equation (A12) reveals that the relaxation
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operator in the Markov approximation effectively filters out
these w values in I' (@) which are in exact resonance with the
system frequencies.
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