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Quantum electrodynamics of an atom near a surface is a timely problem in current theoretical
research. It appears, however, that a full dynamical theory, which includes both the time
evolution of the atomic density operator and the details of the fluorescence radiation (temporal
photon distribution) has never been formulated. In this paper the quantum theory of an atom
near a perfect conductor is presented, and it is indicated how the formalism can be modified to
account for more realistic optically active substrates. An expression is derived for the atomic
spontaneous-decay Liouville operator from the Hamiltonian, which recovers the familiar
results for the lifetimes and energy shifts. Furthermore, the emitted power is calculated as a
function of time from the explicit expression for the radiation field. Comparison of the atomic-
decay rates with the power of the emitted radiation shows the consistency of the theory, as far
as the properties of the fluoresence are concerned. An unusual energy interference in the
fluorescence, which is emitted by a multilevel atom, is predicted. Similarities and discrepancies
with other theories are pointed out, and it is shown that especially the mirror theory has a very

restricted applicability.

I. INTRODUCTION

Emission of fluorescence radiation by an atom in an ex-
cited state is inevitably accompanied by spontaneous decay
to a lower state, which expresses energy conservation. Com-
prehension of the apparent quantized nature of the emitted
field, and the conversion mechanism of internal atomic ener-
gy into radiation, was one of the main goals of the early
quantum theory. It was realized that a full understanding of
the process could only be achieved if the electromagnetic
field were quantized, in the to-date familiar way.! Then the
coupling of an atomic dipole moment to the vacuum field of
the radiation provides a decay channel and the emitted pho-
tons are conceived as excitations of the photon field. The first
victory of the theory was the prediction of the Einstein A-
coefficient (inverse lifetime of an atomic state) and its rela-
tion to the width of a spectral emission line, which confirmed
the Heisenberg uncertainty relation. It is sometimes argued?
that a quantization of the field can be avoided, and it is possi-
ble indeed to construct a semiclassical field theory, which
provides the correct expressions for lifetimes and energy
flows. This is due to the fact that these features are deter-
mined by single-time averages, which merely require the
proper geometry for the interference of waves. Recent ex-
periments®* on two-photon correlations of fluorescence ra-
diation, however, have unambiguously established the fun-
damental quantum character of the radiation field.
Especially the observed phenomena antibunching and sub-
Poissonian photon statistics® are in conflict with semiclassi-
cal radiation theories.®

Spontaneous emission is brought about by the interac-
tion of the atomic dipole with the surrounding radiation
field. Hence, it can be anticipated that the presence of opti-
cally active media or boundaries will modify the dynamics,
since they alter the solution for the free field. Incontestable
evidence for the change in lifetimes of molecules which are
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positioned in the vicinity of a dielectric, was provided by the
classic experiments of Drexhage'® and others.'’'* Subse-
quent experiments focused on the absorption profile of
atoms near a medium,'*~'® and on the coupling of the atomic
dipole to the plasmon field of the substrate.'®->* Theoretical
approaches which were developed to explain the observed
phenomena, include semiclassical radiation theory,?* meth-
od of images,”>° and the linear-response formalism.>'-3¢
Disadvantages which are shared by various theories are: (1)
a semiclassical component in the formalism can never yield
correctly all observable properties of the radiation field, due
to its essential quantum nature; (2) the classical concept of
images fails in quantum electrodynamics, which is most ob-
vious from the fact that the atomic density operator is merely
a matching parameter, as will be explained below, rather
than the fundamental operator which refiects the state of the
system; (3) linear-response theory is a static formulation of
a dynamical problem, although it yields the correct answers.
We believe that a more profound comprehension of the basic
mechanisms should be achieved from a proper interpreta-
tion of the dynamics; (4) a number of computations hinge
on the commutator algebra for a two-level model.

We present a full quantum-electrodynamical formalism
of fluorescence, emitted by an atom near a metal surface.
Atoms are allowed to have many (degenerate) levels, and
there are no artificial parametrizations of an initial state (as
in the mirror approach). It is pointed out how the various
observable properties of the radiation field can be evaluated
in a straightforward fashion. In this paper we intend to pro-
vide the framework for these calculations, and to show the
consistency and applicability of the methods. Extensive re-
sults will be the topic of a subsequent paper. We restrict the
presentation to the case of a perfectly conducting substrate,
which is a limitation since it suppresses interesting fea-
tures,*”*! arising from the coupling to plasmon excitations.
It should be obvious from the work of Carniglia and Man-
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del,** however, that a finite optical penetrability of the sur-
face can be included along the very same lines. Besides that,
the applicability of the theory pertains to observable proper-
ties like decay constants for the atomic density operator, and
temporal (and thereby spectral) features of the fluores-
cence. A nonrelativistic theory will, of course, never yield
correct results for the Lamb shift, but can still be regarded as
consistent in the sense that it provides the renormalizable
expressions, as pointed out by Ackerhalt er al.** Further-
more, the Casimir-Polder attraction between the atom and
the surface will not be addressed here, since it is not directly
related to the problem of fluorescent emission. We refer to
the paper by Milonni,** where this issue is treated with the
same approach as in the present paper.

1. BASIC CONCEPT

Divide space into the parts z> 0 and z < O in a Cartesian
coordinate system, where the region z <0 is occupied by a
medium (perfect conductor) and z> 0 is empty space. An
atom with dipole-moment operator p is located above the
surface ath = he,, 4 > 0. The issue is to formulate the appro-
priate quantum electrodynamics (QED) for this configura-
tion. Since the atom only couples to the electric field through
an electric-dipole interaction, we can omit the magnetic
field. Vectors and vector operators can be divided into a per-
pendicular and a parallel part with respect to the xy plane, as
for instance

=+
for the atomic dipole.
In QED the electric field E(r,t) is a Heisenberg-picture
operator field, and its time evolution is governed by the
Liouvillian L of the entire system, according to

(2.1)

E(r,t) = LU~ 2E(rt,), 2.2)
where L is related to the Hamiltonian H by

L-=#"'H,]. (2.3)
With Eq. (2.3) we can write E(r,t) alternatively as

E(r,) = ¢ PHC— R (p1)e (VAHE— ) 2.4)

The operator exp [iL (¢ — t,) ] is, by definition, the time pro-
pagator in the Heisenberg picture, and, therefore, any
operator A(0) defines a time-dependent operator A(z)

= exp(iLt)A(0). In radiation theory we have an electro-
magnetic field E(r,z), B(r,?), and moving charges, which
are represented by a charge density p(r,t) and a symme-
trized-current density j(r,t). The last two operator fields are
determined by the position and momentum operators of the
electrons and nuclei in a complicated way. Fortunately, it
can be proven®® that these four Heisenberg fields are related
in their r and ¢ dependences by the Maxwell equations. This
implies that integrals of the equations are identical in form to
the classical integrals, irrespective of the mechanism of gen-
eration of the fields. The conditions at a discontinuity espe-
cially acquire the same form, and for our system this reads

E(r,2), =0, inz=0. (2.5)

Of paramount importance for the development of a consis-
tent theory is the notion that restriction (2.5) is an operator

equation in some Hilbert space, parametrized with r and ¢,
and Eq. (2.5) expresses that for z = 0 the parallel compo-
nent of every matrix element, which is a vector in three-
dimensional configuration space, should vanish identically.
We remark that it follows from Eq. (2.2) that it is sufficient
if this boundary condition holds for ¢ = ¢,.

Moving charges in the atom might emit radiation,
which produces an incident field on the surface. Charges on
the surface experience this field and redistribute according-
ly. Due to this rearrangement they also emit radiation,
which is usually regarded as the reflected field. Additionally,
we have a free field, which is present even if there were no
atom. Without a medium, this would be the vacuum field,
but this field also interacts with the charges in the substrate,
and, hence, it produces a reflected field. Based on this identi-
fication we divide the electric field as

E(r,t) =E(r,), + E(r,1),, (2.6)

with f=free, d=dipole. It should be noted that E(r,¢) risnot
really a free field, because it is partially generated by the
surface charges. Since E(r,?) - remains present if we remove
the atom, both the fand the d-components in Eq. (2.6) must
obey the boundary condition (2.5) separately. It remains to
determine E; and E; and the Hamiltonian which governs
their time evolution.

lil. FREE FIELD

The method of images in classical electrodynamics re-
lies on the fact that the solution of Maxwell’s equations is
unique. Then we can simply construct a solution from sym-
metry considerations for z> 0, which obeys the boundary
condition for z10. In the case of an incident plane wave with
wave vector k and polarization e, divided as

k=k“ +kl’ (3.1)

with ke =0, e-€* = 1, and frequency @, = ck, we super-
pose a plane wave (reflected wave), which has wave number
k' and polarization €' given by

K=k —k, (3.2)

and the same amplitude. It follows from Eqgs. (3.1) and
(3.2) thatk's€’ =0, €"*€'* = 1, and w,. = w;. Then the sum
field is the desired solution.

Transposition of this approach to the free field of QED
requires some care, partially because of the operator nature
of that field. In vacuum (no atom, no suface) the expression
for the field reads

€=€l +€u,

€=¢ —¢,

#io,, i[ker — (1 — 1) ]
€, .€

E(ry), =3 a,, + hc, (3.3)

ks 260 | 4

where Vis the (large) quantization volume, and the summa-
tion over k extends over all modes which are supported by
the volume ¥ under periodic boundary conditions. The sub-
script s denotes two polarization directions, perpendicular to
k, and they will be taken to be real. The “amplitudes” of the
field modes are the annihilation (creation) operators
a,, (af,), which are defined by their commutation relations

[ak,s, ’akzs2 ] = O’ [ak,S, ’altzsz ] = 5]";‘2 6_“:2 . (3.4)

Now it is tempting to obtain the free field in the presence of
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the surface by adding the reflected wave k's’ to every mode
ks, just as for the classical field. This would indeed give a
solution of the homogeneous Maxwell equations and obey
the boundary condition. However, every multiple of this
field is also a solution. For a single incident plane wave there
is no question about this normalization, since the external
field is generated by charges and currents, so we merely have
to add the reflected wave, which is the response of the medi-
um. The vacuum field E(r,t), is a freely evolving operator
field, which has no source, and, hence, its amplitude cannot
be determined from classical analogs. In the presence of the
conductor, the most general solution of the homogeneous
Mazxwell equations for the free-field follows after the substi-
tution

Ay, €, €™

(3.5)

for every mode ks in the plane-wave expansion (3.3) of the
vacuum field. Then E(r,t), is an operator field which obeys
the boundary condition by construction. The multiplicative
parameter a would equal unity for an external field, but re-
mains yet to be fixed for a free field. Just as for the vacuum
field, we require that a single-photon excitation of the mode
ks carries an energy quantum 7w, . From Eq. (3.5) we see
that both the originally present wave and the added wave
have the same amplitude, and, therefore, they will contribute
equally to the energy. Since the field intensity is proportional
to the square of the amplitude, we have the only choice

a=1/V2. (3.6)

Substitution of the replacement (3.5) into Eq. (3.3), then
yields for the free field

—aay, (6,e*" + € .e*™)

ei[k"-r — @t — 1) ]

fiw
E(l’,t)f=§ G—;Gks
(V]

X [cos(k,°r)el, + sin(k,r)el,] +hec. (3.7)

An alternative derivation*? of Eq. (3.7) can be obtained by
repeating the quantization procedure, which leads to Eq.
(3.3) for the vacuum field, in the presence of a boundary. We
have avoided this complication by taking advantage of the
fact that the vacuum field is already known, which allows a
direct construction of the free-field by symmetry consider-
ations. Of course, this relies on our simple geometry, and is
not applicable in general.

1V. DIPOLE FIELD

As in classical electrodynamics, we can find the dipole
field from symmetry considerations. In free space the dipole
field is explicitly**

B S
dre,c’r, dt?

__ 1 (14 _l_)
dmeyr?, (c dt+ r.
X{p.(t—h../c) —3[i"+°p.(t—r+/c)]i"'+}, (4.1)

withr, =r—hand ¥, =r_/r_ . Then the dipole field in
the presence of the conductor becomes

E(l‘,t)d =E(l‘,t)1 +E(l',t)2, (4.2)
where E(r,?), follows from Eq. (4.1) after the substitution

E(rt), = — [FoXp(t—r /c)]XT,

r, —»r_ =r + handthereplacement of p by its mirror com-
plement

o= — (4.3)
in terms of the subdivision of p from Eq. (2.1). Forz = 0 we
have r, = r_ and it is easy to check with some vector alge-
bra that the operator field E(r,?), is perpendicular to the xy
plane.

It is important to note the w and p’ are operators in the
same Hilbert space, which allows us to write
(p) + () =0. In classical electrodynamics this is ob-
vious, since p and w’ are simply vectors in configuration
space, rather than operators. Then the system of a dipole p in
r = h above a conductor is equivalent to a dipolepinr =h
and a dipole p’ in r = — h, as long as we only consider the
field for z>0. In QED, the field for z>>0 attains an identical
expression in form, but the system is not equivalent to a
configuration of two atoms with dipole moments p and p'
anymore. If we would replace the surface by a mirror atom
with a dipole moment ', positioned atr = — h, than this p'
would be an operator in a different atomic Hilbert space (of
atom 2), and we could not add () I and (p') i Consequent-
ly, this replacement would violate the boundary condition
(2.5). This situation is reminiscent of the superposition of
the waves ks and k's from the previous section. There, the
annihilation operators a,, and a,, act on a different part of
Hilbert space, which prevents a combination of the modes ks
and k's in the expansion (3.3) of the vacuum field, in order
to construct a field with the correct boundary condition. We
conclude that the correspondence with the classical treat-
ment does not go further than Eq. (4.2), which expresses the
similarity in geometry.

V. HAMILTONIAN

In the representations (4.1) and (4.2), the time depen-
dence of the radiation field is contained in p(¢) and p'(2),
and its r dependence is the usual dipole distribution. The
time evolution of the Heisenberg operator pn(?)
=exp[iL (¢ — t,) 10 (2,) is determined after a definition of
the Hamiltonian. However, we cannot choose H or L arbi-
trarily, because they must generate the field E(r,z) accord-
ing to Eq. (2.2) or Eq. (2.4). Apart from H, we have to
specify the field E(r,?) and the dipole moment u(¢) on the
time ¢,, where the Schrodinger and Heisenberg pictures co-
incide. Then the Hamiltonian governs their time evolution
towards ¢ > #,.

As initial values we choose

(5.1)

p() =p, E(rg) = E(rng),

with p the dipole moment in the Schrddinger picture. The
radiation field is taken to be the free field on ¢ = ¢,,. In analo-
gy with the problem in absence of the surface, we try

H=H, + H — wE(hz,),, (5.2)

with H, the atomic Hamiltonian (internal structure), and
H, the free-field Hamiltonian

Hf - % ﬁa)kaLaks.

The interaction is established by the dipole coupling

(5.3)
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— u(t) E(h,t), which reduces to — pE(h,,), at t =1,
due to Eq. (5.1).

A rigorous check on the consistency of the theory can be
made by evaluating the radiation field explicitly. At the ini-
tial time the field is given by Eq. (3.7) with ¢ =1, This
expression involves only the operators g,, and af;, and,
hence, for ¢ > £, the mode expansion of the total field reads

k ay, (t)ezk"~r

E(rt) = z
0
X [cos(k,T)&;, +isin(k, r)el, ] +he,
(54)

which shows that it is sufficient to consider the time evolu-
tion of a,, (2).

Froma,, (t) = exp[iL (¢ — t,) ]a,, it follows thata, (¢)
obeys the differential equation

d

o0, () = [au (0.H ], (5.5)

with initial condition g, (#,) = a,,. After substitution of the
Hamiltonian (5.2), and a first integration, we obtain

t

it — . w, PR

O (1) =e ' Wg 4 dt'e )
ﬁfol 12

X (t')[cos(kh)e, —isin(kh)el, (5.6)

where we used k, *h = kch and k; *h = 0. If we now substitute
this expression into Eq. (5.4), then we notice that the term
exp| — iw, (1 — %) ]ay, gives rise to the free field E(r,t),
from Eq. (3.7). The remaining term is by definition E(r,#),,
which is found to be

t
E(rt), = zw—kfdt’ exp[ —iw, (t—1t') + ik r]
ks S0 o

X [cos(k, r) €, + isin(k, )€l
Xp(t')[cos(k-h)e, —i sin(k+h)e], ] +he
(5.7)
With the relations between k, € and k', € we can write
e"‘“"[cos(kl-r)ets + isin(k,r)el,
= (€. €™ + €, e*™) (5.8)
and we notice that the two terms in round brackets contrib-
ute equally to the summation in Eq. (5.7). Therefore, we can

drop the second term and multiply the remaining expression
by a factor of 2. Next we use the relation

(1) €, = W ()€, (5.9)
write 7 = ¢ — t’, and take the limit /,— — o, which finally
gives

E(rt), = J dre “¥e

(rf)a 260

X { € '[em""“’u(t—r)

+e* Oy (r—7)]} + he. (5.10)
In this form we recognize a source term proportional to
p(t — 7), which apparently has its origin at r=h, and a
similaroneinr = — h with dipole moment p' (¢ — 7). In the
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Appendix we show explicitly that Eq. (5.10) is identical to
the dipole field from Sec. IV.

VL. MIRROR IMAGE OF A QUANTUM DIPOLE

Now that we have identified the Hamiltonian, we can
raise the question as to what the relation is with the frequent-
ly applied method of images, where one takes

H=H,+H, +H—

‘E(h,%y), — i ’E( — hoty),. (6.1)
Here the substrate is replaced by an identical mirror atom
with Hamiltonian H;, and dipole moment p,,. Matrix ele-
ments of p, and ., between corresponding states are relat-
ed as pand p' in Eq. (4.3) Although the atoms are regarded
as identical, which is evident from the fact that their Hamil-
tonians are assigned the same matrix elements, their opera-
tors act on different portions of Hilbert space. The entire
Hilbert space is spanned by direct-product states of radi-
ation, atom, and image states. Furthermore, we note that our
free field does not come into the picture anymore, and that
the dipoles couple to the vacuum field. As the initial field,
one takes the vacuum field at ¢ = 1,

In order to elucidate the connection with our approach,
we first observe that E(h,z,), equals

E(ht,), = > 60;; ay, [cos(k+h) el
+ isin(keh)el, ] +he (6.2)
Subsequently we  write €, = (€, +€), €

= l(€,, — €,) and divide the sine and cosine in sums of
exponentials. Comparison with the vacuum field (3.3) then
shows that the Hamiltonian (5.2) can alternatively be cast in
the form

H=H, + H, - [wE(ht), + p"E( —hyt),]/V2.
(6.3)

Obviously, there is no mirror Hamiltonian, but more re-
markable is the appearance of the factor 1/v2, which is not a
computational error. This clearly exhibits a difference
between the correct quantum-mirror Hamiltonian and the
off-the-wall guess (6.1) Furthermore, this clarifies why cal-
culations with Hamiltonian (6.1) always require artificial
density operators for the evaluation of expectation values.
Depending on the orientation of the dipole, one has to take a
symmetric or antisymmetric combination of atom and mir-
ror states in order to match overall factors. It should be em-
phasized that the choice of density operator has nothing to
do with the choice of Hamiltonian. In the next two sections
we evaluate the lifetimes of the atomic transitions with the
aid of Hamiltonian (6.3), without any reference to a specific
density operator. This reveals that the coupling to the free
field, which provides the mechanism for spontaneous decay,
is a dynamical property of the system, rather than a conse-
quence of the preparation of the atom in a certain state.

Vil. SPONTANEOUS DECAY

The time evolution of the density operator p(¢) for the
combined system of atom and radiation is governed by the
Liouville equation
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iﬁ%p(;) =[Hp®)], p®t=p@), Trp() =1,
(7.1)

where H is given by Eq. (5.2). Of particular importance is
the reduced density operator of the atom, defined by
P (1) =Tr, p(2), (7.2)

with the trace taken over all states of the radiation field.
With standard reservoir theory*’ we find that p, (#) obeys
the equation of motion

. d .
Z 5. (t) = (L, —iT)p, (). 7.3
;dtp,,() (L, —iT)p, (1) (7.3)

The free evolution of the atom is represented by the Liouvil-
lian L, which acts on an arbitrary density operator o ac-
cording to

L,o=#""[H,0]. (7.4)

Coupling to the radiation field is incorporated in an effective
decay-operator I', which is found to be

o= Z[/‘i:QiU— UQT]’

where the summation runs over the Cartesian components
i = x, y, z of the vector operators p and Q. The Hilbert space
operator (not a Liouvillian) Q, is given by

1 = —iL,T
Q,.=EJ; dre - [;G,-j(r),uj],

in terms of the free-evolution Liouvillian L, and the reser-
voir correlation function

(7.5)

(7.6)

G,(r) = %(OIE,-(h,to 4 10,E (1) 0y, (17

By taking the vauum state |0) (0] for the density operator of
the radiation field, we have adopted the zero-temperature
limit, which is not at all essential but pertains to most practi-
cal situations. Note that the radiation field only enters
through G; () in the relaxation operator. It is precisely this
feature that assures the possibility of a generalization to
more complicated geometries, and to solids with more realis-
tic optical properties.*® Sometimes G, (r) is termed the
(equal space-point) Green function.

Solving Eq. (7.3) for any particular atom requires an
expansion in matrix elements. If we denote the atomic states
by |i,v}, where the quantum number / indicates the energy
#iw; and v any degeneracy, then we can write the Hamilto-
nian H, as

H, =Y #io,P, (7.8)
where P, is the projector onto the subspace with energy fiw,,
e.g.,

P, =3 iv) (vl

With this notation, the exponential which occurs in Eq.
(7.6) can be expanded as

(7.9)

— iL —iA
Te =N e " P,aP,
kl

e (7.10)
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in terms of the Bohr frequencies A,; = @, — w,. Substitu-
tion into Eq. (7.6) then gives

1 ~

Q=— z G; (Ay )Pk.uan
2 jki

where we have introduced the Fourier-Laplace transform of

the correlation function as

(7.11)

G;(w) =ir dr e“G, (7). (7.12)
T Jo

Combining expression (7.11) with Eq. (7.5), and using the
closure relation 2P; = 1 then amounts to the representation

1
Fo= ?% (8o, 16,7 (BB |0 + 82 0168 Y i)
1
-5 %w(gm,, la,a) (b8 |olc,y){d,d|

+ 8%, |d.8) (c,7|o|b,B ) (a,x|),

which contains only the set of parameters

(7.13)

gﬂbp‘fa = % 6,, (A, ) a,alu;|b,B) (cﬂ’lﬂ'j |d’6>- (7.14)

This expression clearly disentangles the atomic properties

(matrix elements of p) from the field correlation G*,., (Az)

as they appear in the spontaneous-decay operator.
Similarly we can write for L,

Laa=Zﬂ)b(lb,ﬂ)(b,ﬂ|0—U|bﬂ><bﬂ|), (7.15)
b8

which involves only the atomic frequencies @, . Taking ma-
trix elements of Eqs. (7.13) and (7.15) then finally leads to
the equation of motion (7.3) in matrix elements:

d
—‘k; ak,y !
dt( Vipalk "y

_ . ’ ! 1 ’ '
- - lAkk' (k,‘V|Pa ‘k sV ) - ? %(gkv:aa% <bﬁ Ipa |k 1 )
+ 88 (ki¥1pa 5.5 ))

1
+7;(ggm. +g§;‘$)(a,a|p,,lb,ﬂ). (7.16)
af
Equation (7.16) constitutes a set of coupled linear first-or-
der differential equations which can easily be solved for any
initial state p, (0).

Viil. RELAXATION CONSTANTS

In view of Eq. (7.14) and the equation of motion (7.16),
the effect of the presence of radiation on the atomic density
operator p, (¢) is completely determined by the reservoir
correlation function G; (7). If we insert the expression (3.7)
with r = h in the definition (7.7) and take the expectation
value in the vacuum state, we obtain

277' — iy T
> we
hfo V ks

X [cos(k-h) (e},e;) + i sin(k*h) (€],-€,) ]

X [cos(kh) (eg,e;) — i sin(kh) (el -e;) ].
(8.1)

G,(1)=
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Next we pass to the limit ¥'— «, convert the k summation
into an integration, perform the summation over the polari-
zations 5 and integrate over the spherical coordinates of k-
space in the same fashion as for the radiation field (see the
Appendix). Then the correlation function attains the form

G,(1)= (e,ve;)(e,e;)

3re fic®

XJ dw e~ "&b, (wh /¢)
o

+ S;ﬁc”s[(e"'e‘)(e"'ef) + (e, (e,¢)) ]

Xfm dw e~ “"w’b, (wh /c), (8.2)
0
in terms of the auxiliary functions
b —1-3 cos(2x)  sin(2x) ’ 8.3
1 () [ 27 (x)° &2
3 [sin(2x) = cos(2x) sin(2x)]
=1-= - .
b =1 - [T+ e
(8.4)

Fortunately, we do not have to carry out the integrations
over  in Eq. (8.2), because we only need the Fourier—La-
place transform, Eq. (7.12), of G; (7). With the identity

der &Y= = 85w — ) + P( ), (8.5)
0

'

@ —
where P stands for principal value, we readily find
Gy(w) = (e,%¢;) (e,7¢) [7, (@) +i8, (@)]
+ [(e.ve;) (e, ;) + (e,e;)(e,e)]
X [7) (@) + 8, (@)]. (8.6)

Here we have introduced

V(@) = i

with H(w) as the unit-step function. In turn, these functions
serve to define the imaginary parts of the damping constants
in terms of the real-valued integrals

5. (w) =—1-Pf do' 1
T Jo

®—a
As usual,®® these integrals diverge, and the upper limit
should be understood as a finite cutoff frequency with c/w,,
~ dimension of the atom.
The dependence on the distance A to the surface is com-
pletely embodied in the functions b, and ;. For 4 o,
which corresponds to x — « in Egs. (8.3) and (8.4), we find

by(w)=b () =1 (8.9)

In the case 4 — oo the spontaneous decay is not affected any-
more by the presence of the surface, and so Eq. (8.9) will
yield the free-atom result. The quantity y,(w) with f = free
follows from Eq. (8.7) after setting b, = 1, which in turn
gives 8,(w) with Eq. (8.8). Then the correlation function
reduces to

G;(@) =8, [7/(@) +i8,(0)], h—oo.

3
woc3bk(wh/c)H(w), k=Ll, (87)

v (@), k=1L1)]. (8.8)

(8.10)
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Combination of Egs. (8.6) and (7.14) gives for the relaxa-
tion constants

g;%% =[r (Ag) + 16, (Adc)]
X {a,alu |b8)(cy|n, |d.6)
+ [¥y (Age) +i6,(A.)]

X @, 16,8 {c,y|n 1d,6), (8.11)
which holds for any atom, dipole direction, and distance to
the surface. For the case of a two-state atom, this reduces to
the familiar results,?? derived by a different method.

Of particular interest is the limit #— 0. A Taylor expan-
sion of b, (x) and b, (x) gives

by(x)=2—%4+ """, (8.12)

b||(x)=0+§x2+"'a (8.13)

for x—0. Therefore, the relaxation constants of a dipole,
which is oriented parallel to the surface, vanish, as could be
anticipated. The atomic dipole is decomposed as
p=pn, +u, and its quantum-mirror image as
K = p, — B, and so (matrix elements of) their sum disap-
pears if p, = 0. More peculiar is the case of a perpendicular
dipole, for which one might expect that this system behaves
as an atom in free space with dipole moment 2p, . However,
we find b, (x) = 2 for h—0, and comparison with Eq. (8.11)
shows that the relaxation constants acquire a value which
corresponds to an atom in free-space with dipole moment
i, V2. We conclude that the classical mirror picture is not
appropriate to explain the QED of an atom near an interface.
Our quantum mirror, for which the Hamiltonian can be
written as in Eq. (6.3), is consistent, since for 20 we find

H=H, + H,— V2, -E(0),, (8.14)

corresponding to an atom in free space with dipole moment
v2p, . Furthermore, this shows again that the factor v2 in
Eq. (6.3) is inevitable.

IX. FLUORESCENT EMISSION

Dynamical features of the adsorbed atoms are amenable
to observation in an experiment, since the details of the time
evolution of the density operator are reflected in the proper-
ties of the emitted fluorescence. We consider the most simple
situation of a photomuitiplier tube which detects the intensi-
ty of the radiation in the far field, without spectral, temporal,
or polarization resolution. This intensity /(¢) is proportional
to the photon counting rate and is given by*’

I(t) = 2e,c{E7(r,t) , E™)(r,1) . )FPAQ 9.1)

for detection at position r at time ¢ and in the far field. Here
AQ is the small solid angle (aperture), the ( 4+ ) and ( —)
indicate the annihilation and creation part of the field, re-
spectively, and the angle brackets denote a quantum aver-
age.

Far away from the radiator, the contributions which go
as r~! will dominate the dipole field, Egs. (4.1) and (4.2).
Retaining only these terms and using

[r+h|=r+th+4+ F%Yr), 9.2)
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gives for the field in the far zone
-1 iz_
drec’r dt?

X{EX [pu(t —r/c +7)
+p' (t—r/c — )]} XE
We have introduced the abbreviation

7 =c " 'h, 9.4)

which equals half the difference between the retardation
times of the directly emitted and reflected fields. Next we
recall that the time-evolution operator for a Heisenberg op-
erator equals exp (iL?), which allows us to write

E(rt), =

(9.3)

E(rt); =—

o c2r eiL('—r/C)L 2(“’(7,) + l»l'l( _ T)
o,

—{[p(r) + W' ( — 1) 1-£19), (9.5)

where we have used a vector identity to rewrite the double
cross product. In order to reduce the length of formulas a
little, we define

m(7) = L*p(r) =e*" L, (9.6)

and similarly m’, which follows after replacing p by p'. Any
dipole operator p can be subdivided as p = p'*’ + p'~),
with u'*’ the lowering (emissive) part and '™ the raising
(absorptive) part. With Eq. (9.5), this divides m(7) into a
(+) and a ( — ) part, and similarly the radiation field
E(r,t), splits up. Obviously, this separation gives the ( + )
and the ( — ) parts of the field, which appeared in the defini-
tion of the intensity, Eq. (9.1). With (---) =Trp(0)(:*)
and the cyclic invariance of the trace, we then find

I = Trp(t—r/c)

8m€,c’
X{[m' () + m' 7 (- 7)']
‘[m*(r) + mP (= 7))
—{[m2(7) + m (- 7)1}

X{[m™*(r) + mP( - 7)'1-t}), (9.7)

which is an exact, although not very transparent, expression
for the intensity in r at time ¢.

A great simplification arises if we neglect the dipole cou-
pling — p-E(h,z), in the Liouvillians L from Eq. (9.5).
Physically this means that the atom does not decay on a time
scale 7 which is a few optical cycles. In the optical region the
decay constants are six orders of magnitude smaller than the
level separations (photon frequencies), so this approxima-
tion is rigorously justified. Then we notice that L acts on a
pure atomic operator w or p', and, therefore, the commuta-
tor with H, vanishes. In conclusion, we can safely replace L
by L, in Eq. (9.5).

In a similar way as we evaluated the operator Q, from
Eq. (7.6) by an expansion in projectors onto atomic states,
we can now write

m(r) =L2 Y PP, (9.8)

ki

and with some operator algebra this becomes

m(r) = ¥ e““AL P, P, (9.9)
ki

For m'( — 7) we replace 7 by — 7 and p by p', and for the
( + ) and ( — ) parts we replace p by u'*’ and p'~, respec-
tively. Furthermore, we note that the factor in parentheses in
Eq. (9.6) is pure atomic, so that the trace over the states of
the radiation field merely turns p into p,, . Next we substitute
expansion (9.8) in the various places in Eq. (9.6) and subdi-
vide the dipole operators in perpendicular and parallel,
which yields

I ==52 S Tr, Pp, (1 — r/0)P, 02,82,

_Aa
277’26063 kim
X{[ w7 cos(Ay7) + ipf ) sin(Ay7) ]

P [pf*’ cos(A,,7) + ipf 7 sin(A,,7) ]

— [w{™F cos(AgT) + ip{ ~2-Esin(Ay7) ]

X P, [+ fcos(A,, ) +ipi* O f sin(A,, )]}
(9.10)

Of course, the distance r between the atom and the detector
only enters as a trivial retardation ¢ — »/c in the argument of
the density operator. The state of the atom is determined by
P., and a spontaneous decay, together with a photon emis-
sion, can only give rise to the observation of a photon at a
time r/c later. Equation (9.10) displays the full angular dis-
tribution of emitted power. Recall that, besides the £ in the
various terms, 7 also depends on f as 7 = f+h/c, which gives
rise to many interferences between the different transitions.
We recognize this structure to result from the interference
between the directly emitted and reflected waves or photons.
Equation (9.10) should reduce to the result for a free atom
in the limit A— oo, but from the discussion in the previous
section we know that 2 -0 also yields the free-atom result
(apart from a possible factor). Then 42— 0 is equivalent to
7—0, and the structure disappears. We shall see in the next
section that the situation 77 0 amounts to strange properties
of this system which are not present for free atoms.

X. EMITTED POWER

Usually the detailed structure of the angular distribu-
tion is not resolved in an experiment. Then the quantity of
interest is the totally emitted power, which equals

dQ I(t)

I(t)tot = AQ

) (10.1)

where the integration extends over the solid angle in which
the atom radiates, which is the half-sphere z>0 in our geom-
etry. With the explicit expression (9.10) the integration is
readily performed, and we find after an expansion in matrix
elements

1

3me,c?

X (bape (@l |5,B8) (BB |ni " ley)

+ bl (aalpnf (6,8 ) (b8 |nf *le,y)),
(10.2)

I(t)tot =

Z A% A% (cylp, (2 —r/c)|aa)
b
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which involves the constants
bi_ =3 sin 7, _ ©08 Ty
a
Tgc T?IC

sin(7,, + 7.5)
(Tap +7e)°

3
bﬂbc=7[—

cos(T,, + 7o)
- 2
(Tab + Teb )
sint,, cost, sinT,

+
Tgc T;‘;c 7.a(:

cos(r,,,, + 7)

], (10.3)

sin(7,, + 7, )

(Tab + 7, (Tab + Teb )2
_ sin(7,, + ch) ] (10.4)
Tab + Teb
in terms of the parameters
T =Byl /c. (10.5)

The remarkable situation appears that the constants b.,,
and b!,. depend on three atomic frequencies rather than
two, which reflects an energy interference in a decay from
|a,@)to |b,8 ) due to the presence of the level |c,y), irrespec-
tive of whether this level is populated or not. It is essentially a
multilevel phenomenon. A second noteworthy feature is that
the emitted power in the transition |a,a) — |6,8 ) cannot be
expressed in the relaxation constants, Eq. (8.11), for the
same transition but that it requires additional information.
This is in contrast to the generic point of view that knowl-
edge of the Green function G; (7) is tantamount to a full
dynamical description (with a Hamiltonian).

If the intermediate-level energy #iw, approaches the ini-
tial-level energy #iw, , then the interference effect vanishes, as
can be found from taking the limit 7, »0in Egs. (10.3) and
(10.4). Comparison with the decay functions (8.3) and
(8.4) then shows that

biba =bl(7-ab)! blba —b" (Tab)’ (10.6)

which shows that the energy-emission constants equal the
spontaneous-decay constants if only two (possible degener-
ate) atomic levels are involved.

To see the modifications due to the presence of the sur-
face more clearly, we compare Eq. (10.2) with its free-atom
analog. Since we already have Eq. (10.2), we can obtain this
expression by taking the limit #— «. From Eqs. (10.3) and
(10.6) we derive the limits

lim b}, = 11m bl,, =6, for a#b, (10.7)
h— e h— o
which gives for the emitted power
AS
I(t), = Z " aylp, (t—r/¢)|aa)
T Imec
X {a,a|n |68 ) (bB | n|ay).  (10.8)

Transitions from @, to w, occur at a rate proportional to the
population of |a) (if we neglect degeneracy) and the matrix
elements of p between |a) and |b ). There are no couplings
with intermediate states |c,y) in the free-atom case, so this
energy-interference effect is a result of the presence of the
surface indeed. Recall that p'*’ is the lowering operator, so
that for the nonzero terms in Eq. (10.2) we must have

H. F. Arnoldus and T. F. George: Fluorescence near a metal surface

@, >0, >o,. Interference in w, - w,, transitions is only in-
duced by intermediate states.

As far a spontaneous decay is concerned, it has appeared
in the previous sections that the limit 2 —0 corresponds to a
decaying atom with dipole moment p,v2 in free space,
which supported the mirror picture provided that the factor
v2 is included in the appropriate places. Even this analogy
has only a very limited significance, as we can now easily
demonstrate. From Eqgs. (10.3) and (10.4) we find

limbl, =2, limbl, = (10.9)
h—-0

which gives for the emission rate

2o 8% (e7lpa (1 — 1/c) ja,@)

I(t)tot -

X (a,a|pi =168 )(b,8 |ni *’|c,y). (10.10)

Comparison with Eq. (10.8) shows that the limit 4 —0is not
identical to the free-atom result with p replaced by p, v2.
The interference between o, and @, in a @, —®, transition
persists in the limit #—0, whereas this vanishes for free
atoms. We conclude that the dynamics of an atom near a
metal surface is essentially different from an atom in free
space, and its properties can only be partially understood
from classical analogs, like the mirror picture.

XI. TWO-STATE ATOM

In order to illuminate the various interpretations of for-
mulas, to show the applicability of the dynamical approach,
and to make sure that all the factors of v2 are consistent we
consider the situation of a two-state atom. Two nondegener-
ate levels |1) and |2) are separated by 0, = @, — @, >0, and
their transition dipole momentis p,, = {(1|pn|2), assumed to
be nonzero and real. From parity considerations it follows
that (1|p|1) = (2|p|2) = 0, which implies that only the de-
cay constants g,1,,, £1212» £2112 and g,,,; are nonzero. Then
the equation of motion (7.16) for the atomic density opera-
tor involves only the combination of parameters

A, =Re g1 (11.1)
A, =Regn; =0, (11.2)
B=3Im(gz15 +8%12)> (11.3)

where 4, = 0 implies that the lowest state does not decay.
This is a consequence of the step function in Eq. (8.7), which
in turn follows from the assumption of zero temperature.
The equation of motion assumes the simple form

%<2|pa|2> = — 4,2lp, |2), (11.4)

_B)<2,pa|1> - %A2<2|pa|1>

+ (34, + iB)(1|p, 2), (11.5)

and the other two matrix elements follow from p} = p, and
Tr, p, = 1. Equation (11.4) for the population of the high-
est state does not couple to Eq. (11.5) for the coherence
between the two states. We recognize 4, as the surface-modi-
fied Einstein coefficient for spontaneous decay of level |2)
and f as the Lamb shift. The last term on the right-hand side

d .
= 2lpal1) = —i(a
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of Eq. (11.5) is a nonsecular coupling between (1o, |2) and
(2|p, [1), which gives a vanishingly small contribution to
the time evolution of p, () for low-lying atomic transition®
and can, therefore, be discarded. Explicitly we find

ol (1uf2)’

Y
27 3nhe?

[b, (@oh /c)cos® O + by (woh /c)sin’ 6],
(11.6)

where 6 is the angle between the dipole direction and the z
axis. The possible values of 4,/4, are represented by the
shaded area in Fig. 1, where 4, is the factor in front of the
brackets, which equals the Einstein coefficient in free space.

The emitted power follows immediately from Eq.
(10.2), and we obtain

I(t) o = finy(2lp, (t — r/c)|2)A,. (11.7)
From Eq. (11.4) we then find
(1), = fiwod,e ~ 2~ "2 H(t —r/c) (11.8)

if we choose the atom to be in its excited state |2) at time
t = 0. The detected power as a function of time decays ex-
ponentially, and the detected energy equals

f dt I(t),,, = Fiw,
0

This result might not seem very surprising, but it certainly
demonstrates the consistency between the equation of mo-
tion of p,(¢) (derived from the Hamiltonian) and the
expression for the emitted power (derived from the explicit
form of the dipole field). Furthermore, it illustrates that
only the energy #iw, which is stored in the atom at ¢ = 0 ends
up in the detector. This implies that the surface merely re-
flects radiation, although with a delay, which is incorporated

(11.9)

e ||

l

ol | |

0 5 10
wyh/c

FIG. 1. Plot of the possible values of the inverse lifetime 4,/4,, of a two-state
atom as a function of wyh /c. The curve which starts at 4,/4, = 2forh =0
corresponds to a dipole direction perpendicular to the surface, whereas the
other curve represents a parallel orientation. In general, 4,/4, assumes a
value in between these two boundary lines, as follows from Eq. (11.6) by
varying the angle of orientation 8. Notice that for certain distances & from
the surface, the lifetime is independent of the dipole direction, which corre-
sponds to the intersection of both curves.

within the # dependence of A,. The surface can only tempo-
rarily accumulate energy, which effectively alters the life-
times of transitions.

Xil. CONCLUSIONS

Many papers have been devoted to QED of atoms near a
surface, and they all share expression (11.6) for the inverse
lifetime of a two-state atom, as a function of the distance to
the conductor. Nevertheless, we have observed that a consis-
tent QED treatment from first principles is not available. It
was pointed out in several places that the mirror approach is
very limited and leads to inconsistencies, whereas the Green
function theory suffers from a lack of dynamics. We started
from the solution of Maxwell’s equations for an atom above
a perfect conductor, which can be found from symmetry.
Then we constructed the Hamiltonian that generates the
correct time dependence of the field, and in Sec. VI, Eq.
(6.3), we wrote it in a mirrorlike form. It appeared that a
factor of y2 emerged in this mirror image of a quantum di-
pole, which was traced back to the fact that the dipole does
not couple with the surface-free vacuum field but with the
free-field, quantized in the presence of a surface. We empha-
size that this term has no classical analog because there is no
vacuum field in classical electrodynamics. Hence, it is not
possible to decide a priori what the coupling Hamiltonian

should be. In the usual mirror approach, there is no 2, and
one has to remedy this in some artificial way.

We applied the general theory to derive the spontane-
ous-emission operator for an arbitrary multilevel atom, and
we obtained an exact expression for the emitted power. It
appeared that the field intensity of the dipole radiation,
modified by the surface, cannot be expressed in the relaxa-
tion constants for spontaneous decay, as is the case for a free
atom. To our knowledge, this has not been noticed before
which is probably due to the fact that this is a genuine multi-
level feature.
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APPENDIX

For completeness we show that the dipole field E(r,?),
from Eq. (5.10) is indeed identical to the expression in Egs.
(4.1) and (4.2). To this end, we first notice that the summa-
tion over the polarization directions filters out the transverse
component of the dipole operator and, therefore, we can
write

S € (6 V) =v— (vk)k (A1)
for any vector v. Next we use the identity
(vk)ke™ = — k ~2(vV)Ve™", (A2)
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after which the dipole field becomes

i&) “ — fyT
E(rt), = Ek: 2eOkVJo dre pz—1)

+ k7 u(t—7) - V]VIe* P L {w(t—7)
4 kW (r—7)-V]V}eFT D) L he (A3)

Then we pass to the limit ¥ — o, which allows us to make the
replacement

-3 - — | akk?| 4,
2 unic 0K

sphere

(A4)

If we insert this into Eq. (A3), then the angular integration
is easily performed according to

Q, ™2™ =4 sin(kr )/kr ., (A5)

unit
sphere

where r . = |r £ h|. Combining the first term on the right-
hand side in Eq. (A3) with its Hermitian conjugate and
writing w, = ck then yields for the field

E(rt), = Z#Lw do j: dr(e " — ")
0
2
x({fc)z— p{t—7) + [p(t—7) 'V]V]

Xsin(wr__/c)/r,.

w* ,
+ [7 W(t—7) + [P — r)-vw}

Xsin(cor_/c)/r-) . (A6)

The double integral is most easily found after a Fourier
transform
E(ro), =f dt € E(r,1), (A7)

and similarly for the dipole moments. Then the integration
over 7 can be carried out with Eq. (8.5) and we obtain

N i @ , .
E(ro), =2 ([—2— f(@) + [u(a))'V]V}

meg \ ¢

Xsin(wr, /c)/r,
w? . R
L w@ + [4'()-717

Xsin(wr_/c) /r_) + P-value integral, (A8)

for w > 0, whereas fl(r, —w)= ﬁ(r,w)* determines the field
for @ <0. Then we discard the advanced solution in Eq.
(A8), which amounts to the replacement i sin(wr  /c)
—exp(iwr . /c), calculate the derivatives, omit the small
principle-value integral, and transform back to the time do-
main. This leaves us with the desired solution, Eqs. (4.1)
and (4.2). It is an artifact of the quantization procedure on
the volume ¥V that the advanced solution appears. Actually, a
plane-wave expansion for the free field at ¢ = ¢, is in conflict
with the boundary condition (outgoing waves) for the
Green function for the emission of radiation. Therefore, we

have to remove the advanced solution at the end.
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