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Abstract. The evaluation of the binary-collision operator @ ( U ) ,  pertaining to collisional 
redistribution of strong laser radiation, involves the computation of a time-ordered exponen- 
tial, which only reduces to a scalar exponential in the medium-coupling limit. In this 
approximation one neglects the alteration of the collisional dynamics due to the presence 
of the laser field. A two-state atom is considered, for which we expand @ ( U )  in the ratio 
of the Rabi frequency R to the detuning from resonance. This parameter vanishes in the 
medium-coupling case, and is small for common gas-phase experiments. It is shown that 
the correction to medium coupling can again be expressed in a scalar function, which 
represents the temporal correlation between the interaction potential and the full time 
evolution during a single collision. The decay constants for collisional transitions between 
dressed states, which are germane to the width of the spectral lines, appear to be sensitive 
to the deviation from medium coupling. Quite remarkably, a non-vanishing collisional 
contribution survives in the limit R+O of @ ( U ) .  

1. Introduction 

An optically active atom in a radiation field absorbs photons from the incident light 
beam, which are subsequently emitted as dipole radiation. Observation of this fluores- 
cence in experiments (intensity, spectral distribution, temporal photon correlations) 
allows a detailed study of the dynamics of a driven atom, since the temporal properties 
of the emission are tantamount to the time evolution of the atomic density operator, 
according to the quantum-regression theorem (Lax 1968). Particularly the study of 
collisions between an active atom and neutrals can benefit from the fact that the time 
evolution of the atomic state in the course of a collision has its effect on the frequency 
distribution of the fluorescence. This feature implies the possibility of determining 
interaction potentials from atomic lineshapes, rather than from collisional cross sec- 
tions. In common experiments the atoms (for instance sodium) are immersed in a gas 
of neutrals (usually a rare gas), and the vapour is irradiated by a CW laser. For not 
too high perturber densities and laser power, the spectral profile of the emitted 
fluorescence is given by the unified theory of collisional redistribution, which assumes 
the validity of the binary-collision approximation (Smith et a1 1973). Contemporary 
CW laser fields, however, cannot be considered as weak fields regarding their 
modification of the collisional dynamics, which forces us to take into account the 
non-perturbative interaction with the radiation. This was accomplished by Nienhuis 
(1981) and Burnett et af (1982) with slightly different methods. The general expression 
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for the fluorescence spectrum of a two-state atom reads (Arnoldus and Nienhuis 1983) 

A 1 

7T 
I ( w )  =- Re Tr d t  ( U d )  (1.1) w - wL - Ld + iT + i W +i@( w - w L )  

with I ( w )  dw the number of emitted photons per unit of time in the frequency range 
( w ,  w + dw). Here A denotes the Einstein coefficient for spontaneous decay of the 
excited state le)  to the ground state Is), d = le)(gl is the atomic raising operator, w L  is 
the laser frequency, L d  indicates the Liouvillian of the dressed atom (bare atom, laser 
field and interaction), r accounts for spontaneous decay and is proportional to A, W 
represents and is proportional to the laser linewidth (phase-diffusion model), @ ( U )  is 
the binary-collision operator, and m is the steady-state atomic density operator in the 
rotating frame. Evaluation of the operator inversion in equation (1.1) in terms of the 
matrix elements of the various Liouvillians and the density operator is straightforward. 
An expression similar to equation (1.1) can be derived for the probe-absorption profile 
of the driven atom (Arnoldus and George 1987). 

In the impact limit of collisional line broadening, where the collision time is much 
smaller than any other time scale in the problem, apart from w ; ' ,  the operator @ ( U )  

assumes a constant value (Omont 1965). Hence information on the collisional dynamics 
is contained in the w-dependence of @ ( w ) .  There exist many equivalent forms of the 
collision operator, but the following integral representation will be the starting point 
of this paper. In terms of L d  and the time-evolution operator U ( ? )  (which will be 
specified in § 3) for a single collision, and in the interaction picture, the binary-collision 
operator @ ( U )  attains the form 

@ ( W ) = ( W - L d )  dt  e'(w-Ld)' ( U ( t ) -  l)(w - L d ) *  (1.2) 16 
An average over the different perturber velocities, impact parameters and instants of 
closest approach is indicated by angle brackets. Expression (1.2) reveals clearly the 
significance of the w-dependence of @ ( U ) .  It arises as the Laplace parameter of the 
transform of exp( -i Ldt ) (  U (  t )  - l) ,  which is in addition sandwiched by the factors 

Although the form of @ ( U )  in equation (1.2) is very transparent, its explicit 
evaluation is obstructed by the appearance of the cumbersome operator U (  t ) .  Apart 
from the impact limit, the expression (1.2) can only be simplified in the medium- 
coupling limit, which neglects the dipole coupling between the atom and laser field 
during a collision (Ben-Reuven 1975, Fiutak and Van Kranendonk 1980). Then @ ( U )  

can be expressed entirely in a scalar function $ ( U )  (no operator), which is related to 
the low-intensity collisional width and shift of the absorption line. If we denote the 
resonance of the two-level atom by w o ,  and the detuning of the laser from resonance 
by A = w L  - w o ,  then IAI acquires a typical order of magnitude of 1 GHz. This is due 
to the inevitable Doppler shift of wL for atoms in the gas phase (Rautian and Sobel'man 
1967). The coupling strength of the atomic dipole p with the laser is expressed in the 
Rabi frequency R = h - ' / ( e l p  - EIg)/ where E is the polarisation of the electric field. In 
the medium-coupling limit one then asserts that R<< IAI in the evaluation of @ ( U ) .  For 
strong CW laser irradiation (- 100 mW, not focused) of an alkali vapour, the value of 

is of the order of 0.1-1 GHz, which implies that the medium-coupling assumption 
is not always satisfied. Besides that, for atoms in the velocity class A = 0, the approxima- 
tion R<< 1A1 breaks down for any field intensity. 

- L d .  
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Attempts to extend the evaluation of @ ( U )  beyond the medium-coupling limit were 
recently made by Schuller and Nienhuis (1983, 1984). These authors adopted an 
expansion in the collision strength (the potential) up to second order, and retained 
the dependence on R up to all orders. This procedure obviously imposes constraints 
on the interaction, although they argued that an extrapolation of their results to higher 
order should be quite accurate. In this paper we expand @ ( U )  in R/lAl, which is a 
small parameter, independent of the potential. It will appear that the deviations from 
the medium-coupling limit can again be expressed in scalar functions, which resemble 
the c$(o). 

2. Dressed atom 

The collision operator @(o) contains the Liouvillian Ld, which represents the free 
evolution of the dressed atom (Cohen-Tannoudji and Reynaud 1977). By definition, 
the operator Ld is diagonal with respect to the dressed states of Liouville space. If 
we indicate these states by the tetradic vectors I +)(+ 1, I -)(- 1, I +)(- I and I -)(+ 1, then 
the eigenvalue equations read 

(2.1) Ld I *)(* I = 0 

R’ = A (  1 + R2/A2)1’2. 

Ldl *)e I = FR’I *)(F I 
and the level separation R’ is determined by R and A according to 

(2.2) 

In Hilbert space the corresponding dressed states 1 +) and I - )  are linear combinations 
of the bare states I g )  and I e) .  Explicitly, 

I * )  = a,lg)* aT1 e )  

a:=+( l+A/R’)  (2.4) 

(2.3) 

with the coefficients given by 

and the sign convention 

a->O a+/A > 0. (2.5) 

For later purposes we introduce the three parameters g+,  g-  and go as the matrix 
elements with respect to dressed states of the projector Pg = I g)(gl on the atomic ground 
state. From the definitions 

g* = ( * I  Pgl*) go = (* I Pgl +) (2.6) 

and from the transformation (2.3), it follows that they are related to a, according to 

go=a+a- .  (2.7) 2 g* = a, 

Then g ,  is expressed in the optical parameters R and A in equation (2.4), and for go 
we obtain 

g,  = R/2R’. (2.8) 

Notice that g ,  and g- obey the relations g,  + g-  = 1 and g+ g- = g:. 
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3. Single-collision evolution 

A semiclassical description of the perturber motion is in general accurate enough for 
the calculation of redistribution of radiation. Hence we can write the interaction 
potential for a collision with a single perturber as 

v(t) = Ve ( t ) p e  + Vg ( t )J 'g (3.1) 
in terms of the projectors on the bare states and the adiabatic potential curves. Inelastic 
collisions are omitted, since they are also excluded in the derivation of the collision 
operator. The corresponding Liouvillian is now defined by 

L( r )  - = h- ' [  V (  t ) ,  . I .  (3.2) 
Nextwenoticethat Y(t)canbewrittenas V = i ( V , +  V g ) ( P , + P g ) + i ( V , -  V g ) ( P e - P g ) ,  
and we recall that P, + Pg equals the unit operator for a two-state atom. Then the 
commutator (3.2) reduces to 

L( f )  ' = -h-'  v d  ( t ) [  Pg, ' ] (3.3) 
with v d  = V, - Vg the difference potential. 

in the interaction picture. We transform L(t)  to i ( t )  according to 
The evolution operator U (  t ) ,  as it appears in @(a) from equation (1.2), is defined 

i(t) = exp(iLdt)L(t) exp(-iLdt). (3.4) 
The U ( ? )  is defined as the time-ordered exponential 

U ( t )  = 6 exp( -i j o ' d s i ( s ) )  (3.5) 

pertaining to a collision with a single perturber. Averaging over all possible trajectories 
then yields ( U (  t ) ) ,  which is required for the evaluation of the @(a). From equation 
(3.3) it follows that L( t )  is diagonal with respect to the bare states, whereas exp(=tiLdt) 
is diagonal in a dressed-state representation. Therefore the exponentials in equation 
(3.4) do not commute with L( t ) ,  which implies that the time-ordered exponential (3.5) 
cannot be reduced to an ordinary exponential. 

The interaction L( t )  is proportional to the commutator with Pg, for which the 
matrix elements with respect to dressed states are the optical parameters g + ,  g -  and 
g o .  If we expand L(t)  onto the dressed states of Liouville space, and substitute the 
result in equation (3.4), we obtain 

i(t) = v + ( t ) ~ + +  uo(t)Lo+v-(t)L- (3.6) 
with coefficient functions 

U,( t )  = -h-'  vd ( t ) g o  exp(*in't) 

v O ( t )  = - f i - '  V d ( f ) ( g - - g + )  

and time-independent Liouvillians 

L* a = [ I  w *  I, . I  
Lo = [ I  -x- I ,  -1. 

(3.9) 
(3.10) 

These operators do not commute either, but they obey the relations 
Lo L, Lo = 0 L;= L~ (3.11) 

which will facilitate the evaluation of U( t )  considerably. 
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4. Transformation of U ( t )  

Differentiation of equation (3.5) shows that U (  t )  obeys 

U ( 0 )  = 1 (4.1) 
d 
d t  

i-  U ( t ) = i ( t ) U ( t )  

and this differential equation with initial condition is eguivalent to the definition of 
U (  t )  as a time-ordered exponential. If we now read for L( t )  the three-term expression 
(3.6), then the properties (3.1 1 )  suggest a transformation to an interaction-like picture, 
which considers vo( t)Lo as the free-evolution Liouvillian. Hence we introduce 

P ( t ) = e x p  iLo dsvO(s)  U ( t )  ( Jof ) (4.2) 

which satisfies the equation 

P ( 0 )  = 1. (4.3) 
d 
d t  

i - P (  t )  = (U+( t)L:( t )  + U-( t)LL( t ) ) P (  t )  

Here the primed operators are given by 

L:(t) = exp( iLo Jor ds u o ( s ) )  L,  exp( -iLo lor ds v o ( s ) ) .  (4.4) 

Expansion of the exponentials on both sides and application of the relations (3.11) 
yields the simple result 

L:(t) = v(t)*L+ LL(t)= v(t)L- (4.5) 
which involves the scalar exponential 

T (  t )  = exp( -i Iot ds U,(.)). 

Inspection of equations (3.7) and (3 .8)  shows that we can express v , ( t )  in v o ( t )  
according to 

v , ( t ) =  a u o ( t )  exp(*ifl’t) (4.7) 

which contains the optical parameter 

go fl a=--- - 
g--g+ 2A’ 

Combining everything finally amounts to the equation for P (  1 )  

(4.8) 

d 
dt  i-P(t)= a v , ( t ) [ L , v ( t ) * e x p ( i f l ’ t ) + L - T ( t )  exp(-ifl’t)]P(t). (4.9) 

It might seem that this is not a great simplification in comparison with equation (4.1), 
but it will turn out that equation (4.9) is especially suitable for the study of the deviation 
from the medium-coupling limit. This is due to the fact that the right-hand side is 
proportional to a, which vanishes for f l / lA l+  0. 

With the transformation (4.2) the collision operator (1.2) attains the form 

a( W )  = ( W  - L d )  dt  ei(W-Ld)‘ (exp (-iL, lof ds ZIo( s)) P (  f ) - 1 )  (0  - Ld ). (4.10) 16 
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If we again expand the exponential in brackets we find that the collisional factor which 
has to be evaluated can be written as 

= (1 - G ) ( P (  t))-i(Lo - L w ? (  t ) * W  t ) )  ++(LO+ G ) ( T  ( t ) P (  t ) ) .  (4.1 1) 

This exhibits clearly that it is not sufficient to solve equation (4.9) for the average 
( P ( t ) ) ,  but that also the operators ( T ( t ) * P ( t ) )  and ( q ( t ) P ( f ) )  are required. Since a 
factorisation as (v( t )P (  t ) )  = (T(  t ) ) ( P (  t ) )  cannot be justified, we have to solve equation 
(4.9) for three averages, rather than only for ( P ( t ) ) .  

5. Basic equations 

The three occurring quantities, which have to be averaged, will be denoted by 

PO(t) = P ( t )  P + ( t )  = v ( t ) * P ( t )  P - ( t ) =  T ( t ) P ( t ) .  (5.1) 

From the definition of T ( f ) ,  equation (4.6), we have 

Then the equations for Po, P+ and P- follow immediately from equation (4.9), and 
we obtain 

i -  PO(t) = a [ v o ( t ) q ( t )  exp(- in’ t ) l_+uO(t)T(t)* exp(if2‘t)L+]PO(t) (5.3) 
d 
d t  

d 
d t  

i-P+(t)= - v o ( t ) ~ ( t ) * P o ( t )  

+ a [  v0( t ) ~ (  t )  exp( -irR’t)L- + U,( t ) T (  t ) *  exp(ii l’ t) l+] P+( t )  (5.4) 

d 
d t  

i - P- ( t ) = u0 ( t ) 7 ( t ) Po ( t ) 

+ a [ vo( t )  7 ( t )  exp( -iR’t) L- + oO( t )  7 ( t )*  exp(iR’t) L+]P-( t ) .  (5.5) 

If we write the equations in this way, we have a set of three coupled equations. 
Alternatively we could replace, for instance, 7 ( t)*Po( t )  in the first term at the right-hand 
side of equation (5.4) by P+( t ) .  In this fashion we can decouple the set, but it will 
turn out that the form (5.3)-(5.5) is most convenient, because the collisional factors 
now only appear as U O ( f ) 7 ( t )  and its complex conjugate. In view of equation (5.2), 
these factors are essentially the time-derivative of 7( t ) ,  which implies that only T ( t )  
enters the equations, rather than T ( f )  and ~ , ( t )  separately. We will take advantage 
of that in the next section. 

6. Laplace transform 

The set of equations (5.3)-(5.5) can be integrated directly, but the solution involves 
again time-ordered exponentials, so this does not give rise to any simplification in the 



Collisional redistribution beyond medium coupling 2209 

evaluation of @ ( U ) .  In order to achieve a more transparent and manageable formula- 
tion, we make a Laplace transform. For an arbitrary function or operator we define 

which has the inverse relation 

It should be emphasised that w is not necessarily real. We tacitly assume that w 
includes a small positive imaginary part, which guarantees the convergence of the 
integral in equation (6.1). For the inverse (6.2) the integral then runs over the real 
w-axis. 

Now we substitute the inverse integrals for Po(r), P + ( t )  and F ( t )  in equations 
(5.3)-(5.5), and we take the Laplace transform of the set. The result can be expressed 
consisely in terms of a function 6 ( w ) ,  defined as the Laplace transform of u O ( t ) q ( t ) ,  
e.g. 

6 ( w )  = loa dt  ei"'uo( t ) v (  t ) .  (6.3) 

With equation (5.2) this becomes 

6 ( w )  = w ; i ( w )  - i  (6.4) 
and hence only the Laplace transform of q( t )  appears. Transformation of the set gives 

dw'(6(w - w'  - C l f ) L +  6 ( w ' -  w -Cl')*L+)po(wr) (6.5) 

- 
w P + ( w )  - i  = -- dw'6(w'-w)*ga(w') 

dw' 6 ( w  - wf)po(  0') 

a3 
CY 

dw'( 6( w - W '  - R')L- + 6 ( w '  - w - R')*L+)P-( w ' )  (6.7) +2?r I" 
which constitutes a set of coupled integral equations. 

The collision operator can be expressed immediately in the solution of this set. 
First we notice that the factor exp(-iL,t) in the integrand of equation (4.10) can be 
moved into the brackets. Its effect on the average in equation (4.11) follows from 

exp( -iLdr)(La* L:) = exp(r in ' t ) (  L ~ *  L:) 

exp( -iLd t ) (  1 - L:) = 1 - L E  
(6.8) 

(6.9) 
and therefore the exponential will only shift the Laplace parameter w over *Cl'. Further, 
the -1 in equation (4.10) yields 

(6.10) 
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With w - Ld = w - O’Lo, and using 15: = Lo,  we move the factor w - Ld on the left-hand 
side of the integral in equation (4.10) into the brackets. Finally, we then obtain 
~ ( w )  = ( ( I  - L g ) ( w F o ( w ) - i ) - f ( L o - L g ) ( ( w + n ’ ) F + ( w + n f ) - i )  

++(L,+ ~ g ) ( ( w  - s ~ ’ ) F - ( w  -n’)-i))(w - 0 ’ ~ ~ ) .  (6.11) 
Although the evaluation of @ ( w )  is now reduced to solving the set (6.5)-(6.7), the 
latter is not easy in general. 

7. Expansion in a! 

For atoms in a perturber bath the parameter a is small, as was argued in 0 1. This 
observation justifies an expansion of @ ( U )  around a = 0. In this section we solve the 
set of integral equations (6.5)-(6.7) up to order a, and in the next section we will 
apply the results for the elaboration of @ ( w ) .  

An obvious way to find a systematic expansion in a for the solution of the equations 
(6.5)-(6.7) is by iteration. For instance, in equation (6.5) we have F o ( w ) =  
i/w + a  dw’(. . . )Fo(w’) .  Then we can substitute the right-hand side with w + U ’ ,  

w ‘ + w ‘ ’  for Fo(w ’ )  in the integrand, which gives an additional term, proportional to 
a’, etc. Care should be exercised, however, because the operators L, and L- also 
depend on a. They are defined with respect to the dressed states, and a transformation 
to the bare states will reveal an 0 and A dependence. This should be taken into account 
carefully, since otherwise inconsistencies will arise. Besides that, the 0’ in the argument 
of the b” depends on a. For the time being we will omit these complications and make 
an iterative expansion of the set. We only keep track of the a dependence which is 
displayed as an overall factor in the various terms. 

Iteration of equation (6.5) amounts to the expansion 
X a 

(b“(o - w’-n’)L- + b”(w’ - w -fl’)*L+) + , . . . (7.1) 

With the relations for an arbitrary Laplace transform f ( w  ) 

(7.2) 

which can readily be deduced from equations (6.1) and (6.2), we find 

Up to order_ a, the average of F o ( w )  over the different collisions only involves the 
average of b ( w ) .  

w l i , ( w ) - i = - b ” ( - w ) * + a ( b ” ( w - R ’ ) ~ - + 6 ( - w - . n ’ ) * L + )  

(wFo(w)-i)= cu~-(b”(o-sz‘))+a~+(6(-w-n’)*)+. . . . (7.4) 

Along the same lines, the iteration of equation (6.6) yields 

X 

w ) * ( ~ ” ( o ’  -fl’)L- + 6 ( - ~ ’  -0’)*L+) 

X 

6(0 - U ’ -  0 ’ ) L -  + 6(0’ -  w -fl’)*L+) +. . 
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and a similar relation can be found for w p - ( w )  -i. Here we used the result (7.4) for 
po(w) ,  and we performed a first integration with equations (7.2) and (7.3). The 
remaining integrals over w'  need some more manipulations, but with straightforward 
algebra and remembering that w 1  in i / w l  includes a positive imaginary part, we can 
write equation (7.5) in the equivalent form 

w P + ( w )  - i = -b"(-w )* + a ~ -  6 ( w  - f i t )  + a ~ +  b"( -w  - a1 )*  

b(t)*b(t-T)*+. . . . (7.6) 

After taking the average of this equation, we observe that the quantities ( b (  t)b( t')) 
can only depend on the time difference t - t'. Therefore, we introduce the correlation 
function of b( t )  by 

+ iaL, d t  e i ( w + n ' ) r  lo' d T  e-in'i 

l ( t )  =(b(O)b(f)) (7.7) 
which equals (b(O)*b(t)), since b(O)= uo(0 )  is real. Then the integrals in equation 
(7.6) can be expressed in the Laplace transform of L( t ) .  We obtain 

( w P + ( o ) - i ) =  - ( 6 ( - w ) * ) + a ~ - ( b " ( w  - ~ ' ) ) + a ~ + ( b " ( - w  -a')*) 
a -- L - ( f ( - w ) * + f ( w  -a1)) 

w -RI 

a -- L,  ( [ ( - U ) *  + f (  -w - a t ) * )  + . . 
w +RI (7.8) 

and in a similar way we find the solution of equation (6.7) to be 

< w P - ( w )  -i) = ( 6 ( w ) > +  a ~ - ( b " ( w  - a r ) ) + a ~ + ( 6 ( - w  -a')*) 
a a +- L - ( f ( w )  + f ( u  - 0,)) +- L+(f((W)+f(-w-a')*)+ . . . .  

w -a1 0 +a' 
(7.9) 

Equations (7.4), (7.8) and (7.9) show that the solution of the set (6.5)-(6.7) up to order 
a can be expressed entirely in the two functions ( 6 ( w ) )  and l ( w ) .  

In order to see more clearly the significance of ( 6 ( w ) )  and L ( w ) ,  we rewrite them 
in a slightly different form. With b( t )  = u O ( t ) v ( t ) ,  the definition of f ( w )  reads 

[ ( U )  = l omdt  ei"'(uo(0)uo(t)v(t)). (7.10) 

Then we substitute equation (5.2) for u O ( f ) T ( t )  and perform a partial integration, 
which gives 

f ( w )  = w lom dt  ei""( v o ( 0 ) [  exp( -i lo' ds u o ( s ) )  - I]). 

A similar procedure for ( 6 ( w ) )  from equation (6 .3)  results in 

( b"( w )) = w lom d t e w t  (ex p ( - i I,,' d s uo ( s ) ) - 1 )  . 

(7.11) 

(7.12) 
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The optical factor g- - g, in the definition (3.8) of oo( t )  equals 1 - 2cy2+. . . and can 
be set equal to unity in this limit of small cy. Then U,( t )  equals - f i - '  v d  ( t ) ,  and hence 
( d ( w  )) is essentially (the Laplace transform of the complex conjugate of) the average 
evolution operator for a single collision, whereas f ( w  ) is the correlation of this operator 
with v d  (0). The f ( w )  contributes only for a # 0, which reveals that a strong laser field 
(R large, or 01 # 0) does not only probe the time regression during a collision (accounted 
for by (6( w ) ) ) ,  but also the time correlation during the impact. 

8. Collision operator 

With the results of the previous section, we are able to compose expression (6.11) for 
@ ( w ) .  We already mentioned that the definitions (3.9) and (3.10) of L, and Lo imply 
an R and A, and thereby an a dependence, which arises after substitution of the 
representation (2.3) for the dressed states into (3.9) and (3.10). We notice, however, 
that the L,  operators, which appear in equations (7.4), (7.8) and (7.9), are always 
multiplied by cy. Hence it suffices to take L ,  at cy = 0, for which we obtain 

L+ * = [ d t ,  * ]  L- * = [d, * ]  (8 .1)  

in terms of the raising operator d = /e)(gJ.  The operators which embrace the ( w p ( w )  - i) 
factors in equation (6.10) only contain Lo,  which has the expansion 

L o * = [ P g ,  - ] - 0 1 [ d + d ~ ,  *I+. . , . (8.2) 

Furthermore, we notice that operators F 4 ( L o  F Li)  act on an L,  ( 01 = 0) and L-( cy = 0) 
term from equations (7.8) and (7.9). It is easy to verify that 

(8 .3)  

which implies that half the number of a-terms in ( w p , ( o )  -i) vanishes. Next we note 
that 

* ; ( L o r  Li)L,(cy = 0) = 0 

a'= A ( 1  + 2 a 2 + .  . .) (8.4) 

so we can replace R' by A in the arguments of ( 6 ( w  +Q,'))  and ?(U *a'). After 
combining everything and performing all the operator algebra, we then obtain for the 
collision operator 

@( w ) a  = ( U  - A ) (  d( w - A)) d t  Tr d a  - ( w  + A)( 6( -U - A)*) d Tr d ' a  

+ a ( w ( 6( - U ) * )  - ( w - A)(  6( w - A))  + [ ( - -U)*  

+ f (  w - A ) )  d Tr( P, - P,)v - a ( -U( 6( w )) + ( w  + A ) (  6( -w - A))  + f (  w ) 

+ f (  - w - A ) * )  d Tr( Pg - P, ) a (8.5) 

which defines the action of @ ( U )  on an arbitrary Liouville vector a. 
For a -$ 0, only the first two terms on the right-hand side survive, and we recover 

the medium-coupling expression for the binary-collision operator. These terms are 
proportional to the coherences Tr d a  = (81 a1 e) and Tr d i u  = (el (TI g) of the matrix a. 
The correction terms, which account for the strong-field effect on @ ( U ) ,  appear to be 
proportional to the population inversion (eluI e)-(gialg)  of U. It is noteworthy that 
@ ( w ) a  has two terms proportional to d t  and two proportional to d, but no terms with 
P, or P,. This reflects the fact that we only considered elastic collisions, which cannot 



Collisional redistribution beyond medium coupling 2213 

directly alter the populations of U with respect to the bare states, but only through 
affecting its coherences. We mention the two properties of @ ( U ) ,  

Tr(@(w)c+) = 0 ( @ ( W ) U ) +  = @(-w)Ut  (8.6) 

which follow immediately from equation (8.5). 
At this stage it is convenient to make a change in notation. We replace the functions 

4 ( w ) =  (wo-w) (&wo-w) * )  (8.7) 

(b)) and m by 

$ W = 4 ( 4 - Z ( w 0 - w ) *  (8.8) 

which have the integral representations 

d t  ei(w-Wo)r (exp (i  lo' ds  u o ( s ) )  - 1) (8.9) 

The shift over the atomic resonance frequency wo is made, in order to relate the 
behaviour of the averages (. . .) for t+a to the behaviour of + ( U )  and $ ( w )  around 
w = wo,  rather than around w = 0. In terms of 4 ( w )  and + ( U ) ,  the collision operator 
(8.5) attains the simple form 

@ ( OJ ) U = 4 ( W L  + U )  P, cPg  + 4 ( W L  - w ) * Pg UP, 

+ (Y ( CC, ( W L  + w ) + 4 ( W O  - w ) *) ( duP, - P, a d  ) 

+ (Y ( I) ( W L  - w ) * + t) ( W O  + w ) ) ( Pg a d  - d UP, ) . (8.11) 

Apparently the function 4 represents the medium-coupling limit, whereas CF, accounts 
for the deviation from this limit for (Y # 0. We notice that around w = 0 the function 
4 is centred with w L ,  whereas 4 occurs both as centred around w L  and around wo.  

9. Rate of optical collisions 

Radiationless transitions between the states le)  and 18) are prohibited, since we neglect 
inelastic collisions, but photon and collision assisted transitions can occur. During 
the impact of a collision the energy levels of le) and 18) are temporarily shifted with 
the adiabatic potentials V, ( 1 )  and V, ( t ) ,  which can provide a resonance for a laser 
photon with energy huL.  Thus for large detunings the presence of collisions enhances 
the photon absorption rate. These collision-mediated photon absorptions or emissions 
have been called optical collisions by Lisitsa and Yakovlenko (1974). For strong laser 
fields, the bare atomic states lose their significance since the diagonal Liouvillian is 
Ld,  corresponding to a dressed atom. Hence the optical collision rate is more appropri- 
ately defined with respect to the dressed states. The rate constants for the transitions 
are determined by the collision operator @ ( U )  for w = 0, accordinging to Nienhuis 
(1982) 

k(* + F) = - ( ~ I ( @ ( O ) l  *)(* I)I 7 )  (9.1) 
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and with expression (8.11) we derive 

k ( + +  -) = k ( -  + +) 

First we notice that the rate constant for transitions from 1 +) to 1 -) equals the rate 
constant for 1 -)+ I +), which was not the case for the expansion of @ ( w )  to second 
order in the interaction potential (Schuller and Nienhuis 1983, 1984). This implies 
that a possible asymmetry in the rate of optical collisions is only induced by very 
strong fields, which can presumably not be generated by a CW laser, at least not for 
gas-phase experiments, with the inherent large detunings. Second, in the medium- 
coupling limit, equation (9.2) should be replaced by 

R2 
k(*+F)=-Re4(wL) 2Rt2 (9.3) 

and we remark that this is not the limit of equation (9.2) for a + 0. The dependence 
on the laser intensity in equations (9.2) and (9.3) is the same, since 4 and + are 
independent of R. We obtain equation (9.3) from the definition (9.1), with a set equal 
to zero in equation (8.11), which is the correct procedure, as mentioned before. For 
very strong irradiances the R dependence of k(* + F) changes considerably, as was 
shown by Yeh and Berman (1979) with numerical model calculations. 

In the impact limit, where the collision time is effectively zero, the w dependence 
of + ( U )  vanishes, and we have R e + ( w ) + y ,  with y the collisional width of the 
low-intensity absorption profile (Omont 1965). For the medium-coupling case the w 
dependence of + ( U )  follows from equation (8.9), which can equivalently be written as 

Beyond the medium-coupling limit we find for the collisional factor in k(* + T)  the 
representation 

Re(4(w,) - cCl(WL) - c c l ( 0 0 ) )  

= ( wo - w L )  Re d t  e-i("'o-uL)l( v o ( 0 ) [  exp( i lo' ds  v o ( s ) )  -11 )  

( v o ( t )  - v o ( 0 ) )  exp 
1-ag 

(9.5) 

Here use has been made of the identity -iw$(w) = ~ ( c o )  in the limit w + O  for any 
Laplace transform. The relevance of the consideration of the rate of optical collisions 
is that this quantity is directly amenable to experiment. The collisional width of atomic 
spectral lines, as they follow from equation (1.1) in the limit of well-separated lines, 
is proportional to the rate of optical collisions (Nienhuis 1982). Hence it should be 
feasible to determine whether the correlations during a collision, represented by +( w L )  
and +(wo)  in equation (9.2), are significant or not. 

10. Conclusions 

In the medium-coupling limit the stimulated radiative transitions between the states 
I e )  and 1 g )  and the AC Stark shift of the resonances are neglected. This simplification 
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amounts to the substitution 

in expression (1.2) for @ ( U ) ,  and in equation (3.4) for i ( t ) .  Then every appearing 
operator is diagonal with respect to the tetradic bare states, and @ ( U )  reduces immedi- 
ately to the first two terms on the right-hand side of equation (8.11). This medium- 
coupling limit of collisional redistribution is reminiscent of the treatment of relaxation, 
due to the coupling with a thermal bath, and in the presence of a harmonic interaction 
(Louisell 1973) (which gives, for instance, an expression for the spontaneous-decay 
operator r in equation (1 .l)). Generally, the medium-coupling approximation is tacitly 
assumed. Modifications which take into account the strong-field effect on the decay 
constants lead to a relaxati.on theory with respect to dressed states. This was accom- 
plished in a full quantum mechanical way by Cohen-Tannoudji and Reynaud (1977), 
and for a classical driving field by Arnoldus et a1 (1986), yielding the same results. 

The analogue of the Einstein coefficients for spontaneous decay of dressed states 
is the rate of optical collisions in the theory of redistribution. Due to the non-Markovian 
nature of a collision process (except in the impact limit), the extension of @ ( U )  beyond 
medium coupling is much more involved than its thermal-bath analogue. The finite- 
memory effect results from the finite collision time and is reflected in the w dependence 
of @ ( U ) .  Already in the medium-coupling case the function r#~ has a frequency 
dependence, which displays the probing of the time evolution of a collision. We have 
shown that for stronger fields also the correlation between v o ( t )  and exp(i j h  ds z),,(s)) 
enters, which could be incorporated with a single function $ ( U ) .  We emphasise that 
the numerical evaluations of the scalar functions 4 and $ for model systems have the 
same complexity, which should be obvious from equations (8.9) and (8.10). In replacing 
@ ( w )  by a combination of 4 ( w )  and + ( U ) ,  we avoid the cumbersome computation 
of time-ordered exponentials. Result (8.11) can be applied immediately for the evalu- 
ation of spectral lineshapes. We merely substitute the expression in equation ( l . l ) ,  
and invert the matrix. 
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