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The old problem of light scattering from a perfectly conducting surface is addressed. An
electromagnetic field is incident upon the boundary, where it induces a charge and current
distribution. These charges and currents emit the reflected fields. A set of equations for the
charges and currents on the surface is derived by eliminating the E and B fields from
Maxwell’s equations with the aid of the appropriate boundary conditions. An explicit and
general solution is achieved, which reveals the confinement and redistribution of the charge
and the current on the surface by the external field. Expressions are obtained for the surface
resolvents, or the redistribution matrices, which represent the surface geometry. Action of a
surface resolvent on the incident field, evaluated at the surface, then yields the charge and
current distributions. The Faraday induction appears as an additional contribution to the
charge density. Subsequently, the reflected fields are expanded in spherical waves, which have
the surface-multipole moments as a source. Explicit expressions are presented for the surface-
multipole moments, and it is pointed out that charge conservation on the surface sets
constraints on these moments. The results apply to arbitrarily shaped surfaces and to any
incident field. For a specific choice of the surface structure and the external field, the solutions
for the charge, the current, and the reflected fields are amenable to numerical evaluation.

1. INTRODUCTION

The study of chemistry and physics near a surface has
developed rapidly during the last decade. Investigations
range from classical processes like periodic deposition,' im-
age formation,>™ and dispersion of plasmon waves>™* to
quantum mechanical issues as Raman scattering of intense
laser light,?>?* atomic fluorescence near a rough surface,”***
the coupling of an atomic dipole to surface polaritons,”” and
cooperative emission processes near a conductor.”® It ap-
pears, however, that besides these well-established theories,
even the simplest problem—Iight scattering from an arbi-
trarily shaped surface—is not yet completely tractable. Ear-
ly approximations like the Rayleigh—Fano expansion (neg-
lection of multiple reflections) or the small-roughness limit
provide sufficient understanding of the induced effects on a
boundary by incident fields, but exact solutions in the form
of general expressions for the scattered fields and the surface
waves are not available at present. Contemporary closed-
form solutions pertain only to polarized plane waves, inci-
dent upon gratings with well-defined geometries, like square
or sinusoidal wells. The results always rely on the periodicity
of the surface roughness, which implies the applicability of
Fourier-series expansions, or a numerical solution of the ex-
tinction theorems, as they exist in many phrasings.”®'! In
this paper we consider a metallic surface, which is illuminat-
ed by an externally applied electromagnetic field with an
arbitrary time dependence and spatial distribution. The sur-
face is not assumed to be periodic, and our results apply
equally well to a closed surface or to assemblies of surfaces,
as for example a sphere near a grating. We achieve closed-
form solutions of Maxwell’s equations for the charge and
current distributions on the surface and for the reflected
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fields, although at the expense of the assumption that the
metal has a perfect conductivity.

ll. THE FIELD EQUATIONS

The time development and the spatial distribution of the
charge density p(r,?), the current density j(r,?), the electric
field E(r,?), and the magnetic field B(r,) are governed by
Maxwell’s equations. If we adopt a Fourier transform of the
real-valued fields

E(r,0) =LReJ dw ﬁ(r,w)e“"‘", 2.1)

T o

and similarly for the other three fields, then the field equa-
tions read

V-[e(r)E(r)] =p(r), (2.2)
V-B(r) =0, (2.3)
VXE(r) —iwB(r) =0, (2.4)
VX [p(r) 'B(r)] + iwe(r)E(r) = j(r), (2.5)

where we have simplified the notation by writing E(r) rath-
er than E(r,w). The frequency dependence of the fields and
of €(r) and u(r) will be suppressed throughout this paper.

We shall suppose that the entire space is occupied by
two kinds of media, perfect conductors and perfect insula-
tors, which are separated by boundaries. The set of all boun-
daries will then be referred to as the surface. Within each
medium the dielectric constant e(r) and the permeability
p1(r) will be assumed to be r independent, but across the
surface €(r) and p(r) are discontinuous. Conductors are
specified by a relation like j(r) = yE(r), ¥ >0, and the as-
sumption of perfect conductivity implies the limit y— oo.
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Since the current density j(r) should remain finite, we ob-
tain E(r) = 0 everywhere in the conductor. From Eq. (2.2)
we then find p(r) = 0, and Eq. (2.4) yields B(r) = 0, under
the restriction 3£ 0. In this paper we will exclude the trivial
static case w = 0. Finally, Eq. (2.5) gives j(r) =0, and
hence Maxwell’s equations in the conductor reduce to

E(r) =0, B(r)=0, p(r)=0, j(r)=0. (2.6)

Around a point r on the surface the fields are discontin-
uous. Application of Gauss’ theorem on (2.2) and (2.3) and
of Stokes’ theorem on (2.4) and (2.5) enables us to rewrite
the equations in the vicinity of the surface as

E(*) =e lo(r)n(r), 2.7)
B(r*) = ui(r) Xn(r). (2.8)

Here o(r) and i(r) are the surface charge and current den-
sity, respectively, and n(r) represents the unit normal vector
in r on the surface, with the convention that it points from
the conductor to the dielectric. We have introduced the no-
tation r* to indicate a point in the dielectric and close to r.
Explicitly, we write

r* =r+n(r)é with §0. 2.9)

We note that Egs. (2.7) and (2.8) combine the four Max-
well equations in r on the surface, and that they contain four
unknown fields.

The dielectric is presumed to exhibit no conductivity at
all, so it can be specified by j = yE with ¢ — 0. This implies
J =0, and from charge conservation (V+j = iwp) we find
p = 0, since we required w 0. Hence, all charges and cur-
rents, if any, are situated on the surface as o(r) and i(r). The
electric and magnetic fields in the dielectric are generated by
o(r) and i(r), and they contain the incident fields. This no-
tion allows us to write Maxwell’s equations for a point r in
the dielectric as

p(r) =0, (2.10)
j(r)y =0, 2.11)
E(r) —E(r)™ = ———1fdA "o(r)VG(r,r")
de
+i“’—“fdA'i(r')G(r,r'), (2.12)
47
B(r) —B(r)i“:—;—”fdA'i(r’)xm(r,r'), (2.13)
T

where the integrals run over the complete surface. This rep-
resentation involves the Green’s function of the wave equa-
tion,

G(rr') = |r—r'|"'exp(ik |r —r'|), (2.14)
and its gradient
VG(rx)=(r—1)|r—r'|(kjr—r|—1)
Xexp(ik |r —r'|), (2.15)

which contain the wave number k = (eu)'/%w. We have to
solve the set (2.12) and (2.13) for o(r), i(r), E(r), and
B(r), and Maxwell’s equations (2.7) and (2.8) on the sur-
face can be considered as the boundary conditions.
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lll. ELIMINATION OF THE FIELDS

Maxwell’s equations in the dielectric medium are basi-
cally two equations with four unknown fields, but we can
eliminate the radiation fields E(r) and B(r) with the bound-
ary conditions (2.7) and (2.8). To this end we take r in
(2.12) and (2.13) asr™ from (2.9), and then substitute the
boundary values for E(r*) and B(r*). This procedure
leaves us with a set of two equations for o(r) and i(r). The
appearance of G(r*,r') and vV . G( r*,r') in the integrands
of (2.12) and (2.13) is not convenient since it involves
points r*, which are not situated on the surface. It will turn
out to be more practical to have equations in which the
Green’s function connects only points of the surface, rather
than a point on the surface to a point in the dielectric. How-
ever, care should be exercised in replacing r* by r, because
the integrals are discontinuous across the surface. If we take
the limit r* —r properly (see Appendix), we obtain

fdA "o(r)VG(rt,r)

= —2ro(r)n(r) + fdA "o(r)VG(r,r'), (3.1)

fdA'i(r’)G(r*,r’) =J-dA’i(r’)G(r,r’), (3.2)

JdA’i(r’)xVG(r*,r')

= — 27i(r) Xn(r) +fdA "I(r)XVG(ry'), (3.3)

and we observe that replacing r* by r requires that we
should add the terms — 27o(r)n(r) and — 27i(r) Xn(r)
in Egs. (3.1) and (3.3). It was already pointed out by Mara-
dudin®® that integrals of this kind appear to have a finite
contribution from a single point. This feature can, however,
also be regarded as resulting from the discontinuity of the
fields across the surface. Critical comments on this issue
have also been made by Agarwal'? in a slightly different con-
text. Combining everything then yields the set of equations

o(r)n(r) = _—lfdA "o (r)VG(r,r)
21

+ lwzﬁ f dA"i(x")G(r,r') + 2€E(r)™,
T
(3.4)

i(r) Xn(r) =~;—1fdA () XVG(nr) + 21 B(r)™,
s
(3.5)

for o(r) and i(r). We can write ¢(r) and i(r) in the inte-
grands as

o(r) =n(r){o(r)n(r)), (3.6)
i(r) = n(r) X(i(r) Xn(r)), (3.7)

since i(r) is parallel to the surface, which shows that Egs.
(3.4) and (3.5) are essentially a set of equations for the vec-
tor fields o(r)n(r) and i(r) Xn(r) on the surface.
Equation (3.5) fori(r) Xn(r) has the form of an inho-
mogeneous Fredholm equation of the second kind, where
the external field 2u~'B(r)™ is the inhomogeneity. In the
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same fashion, Eq. (3.4) has 2¢E(r)™ (and the current
term) as an inhomogeneous part. Hence the incident fields
can be regarded as the source terms of these equations. In
this sense o(r) #0 and i(r) ## 0 are a result of the presence of
the driving field, so the charges and the currents are confined
on the surface by the field. If there is a net charge on the
surface, this mechanism might also be conceived as a redis-
tribution process. Equations (3.4) and (3.5) resemble the
extinction theorem for the analogous problem of scattering
of an incident field from a dielectric grating. The extinction
theorem is, however, a homogeneous equation, and its solv-
ability condition is equivalent to the dispersion relation for
surface polaritons.

IV. REPRESENTATION OF THE SURFACE

Ordinary Fredholm equations are single-variable equa-
tions for a function on the complex plane, and they can be
solved by an expansion of the function onto a suitable com-
plete set. Qur equations for o(r)n(r) and i(r) Xn(r) are
three-dimensional and surface-related equations for a vector
field, so we have to modify the standard technique slightly.
In order to accomplish this, we introduce spherical coordi-
nates (7,0,¢) with respect to an arbitrary origin, and we will
abbreviate the direction 6,¢ by the single variable . Then
the assembly of all points r, which constitute the surface, can
be represented by a set of functions £(2) ;. The £(Q1),; will
indicate the distance from the origin to a point r on the sur-
face, in the direction ), while the subscript A accounts for
the multiplicity (see Fig. 1). In this fashion, the surface is
divided in regions, numbered by 4, where its shape is defined
by a function £(Q),, which determines uniquely the spheri-
cal coordinates (»,6,0) = (£(6,4) ,,6,¢) of a point r in this
region. The shape functions £({2),; will be assumed to be
given, and therefore we can represent a point on the surface
by its surface coordinates (4,{}) rather than by its spherical
coordinates (7,{2). We will use A as a subscript and ) as a
variable.

The measure dA({}),; and the direction n(}); of the
surface at a given point (4,0)) are fixed by its shape £(£2) ;.
For instance, the infinitesimal surface area at (4,Q0) is given
by

dA(Q)A_ =f(ﬂ)/1 dQ, (4.1)
with
a 2
A, =§<mi[§<mi + (gg(mi)
l a 231/2
sinze(i,?g(m*) } ’ (4.2)

FIG. 1. Illustration of the surface multiplicity. From the origin O in the
direction Q, we find points on the surface which have a distance
£(Q),E(Q),,... to 0. Therefore, a description of the surface in spherical
coordinates requires a set of functions £(Q2),.
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in terms of the infinitesimal surface area dQ} = sin 6 d@ d¢ of
the unit sphere. Hence the function f({}), accounts for the
deviation of the surface curvature from the curvature of a
sphere, and with the aid of (4.1) we can transform a surface
integral over the region A into an integration over a part of
the unit sphere. We note that not every direction 2 for a
given A corresponds to a point on the surface. It will turn out
to be convenient to extend the definition (4.1) of f({2); as

1), =0, if Q does not correspond to a point on

the surface in region 4. (4.3)
Then we can write the surface integrals as
[aa =3 [aosa, - (44)
A

where the integrals now run over the complete unit sphere
for every A. This construction will enable us to apply the
general theory of expanding vector fields on a sphere.

V. EXPANSION OF THE FIELDS

Since we are using spherical coordinates, the spherical
harmonics Y(2),,, supply a suitable complete set on the unit
sphere for an expansion of the magnitude of a vector field.
The direction of a vector will be expanded onto a space-fixed
set of three unit vectors, denoted by e, , which is, for instance,
the Cartesian set e,,e,.e, or the spherical set e_ ;,€,¢_;.
Then the vector fields Y (), €, constitute a complete set on
the unit sphere for an expansion of an arbitrary vector field.

It is our aim to solve Egs. (3.4) and (3.5) for o(r)n(r)
and i(r) Xn(r). We thus start with an expansion of these
fields,

SQ),0(0),n(Q)z =Y Spa Yim (Qe,,

Imr

A0, X0(0), = T Lpr Vi (Ve

Imr

(5.1)

(5.2)

and note that we have included a factor f({}); on the left-
hand side. This is necessary, since otherwise the left-hand
side of Egs. (5.1) and (5.2) would not be properly defined
for every €. The driving, incident fields E(r)" B(r)™ in
Egs. (3.4) and (3.5) enter only through their value on the
surface, so that we can expand them on the surface set ac-
cording to

f(Q)AE(Q)T(::zElmTA Y(Q)Imer! (5'3)
imr
), B(Q)ire= ZB,mTAY(Q),meT. (5.4)

Imr

The expansion coefficients for the incident fields then follow
from the inverse relation

E,. . =fdﬂf(ﬂ),1E(Q)‘,{‘°-efY(Q)}',‘,,, (5.5)

By =fd0f(Q)AB(Q)T°-efY(Q)ﬁn, (5.6)

and the appearance of f({1); in the integrands reflects that
we actually have integrals over region A of the surface. This
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illustrates that /(Q); Y(Q)¥,e* can be considered as a com-
plete surface set for the expansion of a vector field on the
surface. Note that we allow e, to be complex, which is the

case for a spherical set.

VI. THE CHARGE AND THE CURRENT DISTRIBUTIONS

It is straightfoward to rewrite Eqgs. (3.4) and (3.5) for
o(r)n(r) and i(r) Xn(r) in terms of their expansion coeffi-
cients. We obtain

Z (R I(rzr?r/l,l'm'r'/l C (511' amm' 51’7" 511 ’ )Sl'm'r'l '

I'mrrA

= lwe/u‘ Z R l(r?l?r/{,l ‘'m't'A 'Il'm'r’/l T 2EE‘Im‘r/l b (6 1 )
I'm'r'A’
z (R l(hl‘l)ﬂ'/{,l mrA T 51[' 6mm' (STT' 5/1/1 ’ )Il'm'-r'ﬂ. '
A
= —Zlu_lBlm-r/l’ (62)

which are two coupled inhomogeneous linear equations for
the surface charge S,,,,, and the surface current [,,,,. The
expansion coefficients E£,,,.; and B,,,, for the external fields
are supposed to be given. The set (6.1) and (6.2) also in-
volves three R-matrices, with matrix elements

R =;—7T‘fdn f A9 (), YR, Y(Q),.,,

X {e:‘x(n(Q’)/l’ Xer' )}.VG(Qyﬂ’)i/{"
(6.3)

R s =5 | 40 [ a0 o, vog, v,

X (n(Q), . e*)exVG(Q,0) ., (6.4)

Riarmrs = [ d0 [ a0 0, v, v,

Xe*(n(Q);. Xe, )G(LQ) 1, (6.5)

where we have written G(Q,Q') ,,. for the Green’s function,
which connects the points (4,02) and (1 ',Q0") of the surface.
We emphasize that these R-matrices depend only on the ge-
ometry of the surface, and not on the external fields. Pre-
scription of the shape of the surface determines the R-matri-
ces. Recall, however, that the R-matrices depend on the
frequency w through the Green'’s function, but this is merely
a parametric dependence and independent of the external
field.

The expansion coefficients S, ; can always be arranged
in a one-dimensional array, considered as a vector, and simi-
larly R 'V, R ®, and R ® can be regarded as two-dimensional
matrices. Then we can write (6.1) and (6.2) as

(R -1S= iweuR BF — 2€E, (6.6)

(RY—1)[= —2u~"'B, (6.7)

where we have also adopted a vector representation for the
driving fields. The solution of (6.6) and (6.7) is immediately
found to be

2¢€

{E—ia)R“’;B},
I—R(”
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2 —1

=1 Fw?

which expresses the charge density S and the current density

I explicitly in the externally applied fields £ and B and the
surface-shape matrices R "', R®, and R .

For vanishing external fields, e.g., E = 0 and B = 0, the
charge and current distributions also vanish, as can be seen
explicitly from Eqgs. (6.8) and (6.9). Hence the charges and
currents are indeed confined to the surface by the external
fields. Remember that we have excluded the static case
® = 0, for which we can have charges on a surface without
external fields. Furthermore, we can identify the resolvents
(1—R™?)~'and (1 — R™)~'astheoperatorsthataccount
for the redistribution of the charges and currents, respective-
ly, as resulting from the Lorentz force between charges and
between currents. The coupling of charges and currents,
which is the Faraday induction, is incorporated in the R ¥-
matrix.

(6.9)

VII. THE REFLECTED FIELDS

The incident field induces charges and currents on the
surface, and these oscillating charges and currents emit radi-
ation, which are the reflected fields. In this section we ex-
press these fields in terms of the expansion coefficients S,,,. ;
and I, , as they are given explicitly in the previous section.

In Eqgs. (2.12) and (2.13) we expressed the reflected
electric field E(r) — E(r)™ in terms of o(r) and i(r), and
similarly B(r) — B(r)™ in terms of i(r). With (3.6) and
(3.7) we can rewrite these equations in a way that o(r)n(r)
and i(r) Xn(r) are the source fields, and then we can apply
(5.1) and (5.2) in order to find an expansion on the spheri-
cal set. However, the resulting expressions are not transpar-
ent, since they will involve the Green’s function and its gra-
dient. In order to achieve a more comprehensible result, we
expand the Green’s function on the spherical set. We write™

G(rr))

= 4mik 3 h OkEQ);), Y(Q),, jkr), Y (Q)E,,
Im
(7.1)

where 4 [ and j, are spherical Bessel functions. Here the
convention is that we choose the origin of our coordinate
system in the dielectric, and in such a way that the inequality

s, >r (7.2)

holds for every (4,02). The vector r is the position in the
dielectric, where we wish to evaluate the reflected fields. The
expansion coefficients S),,.; and 7,,,., depend on the position
of the origin, so both the charge and current distributions
and the reflected fields must be evaluated with respect to the
same coordinate system. Futhermore, restriction (7.2) must
hold in order to apply the series expansion (7.1) of the
Green’s function. For a given r, this can always be arranged.

The solution for the fields can be cast in an appealing
form by the introduction of the source-term vectors

S[(r/ji) = 2 SImrA €., (73)
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I} = Zl,mder. (7.4)
In view of (5.1) and (5.2), these S{*’ and I{¥ are just the
expansion coefficients of f(Q),0(0),n(Q), and f(N),
i(0)); Xn(Q), after an expansion of these fields onto the set
of spherical harmonics, but without a decomposition along
the basis vectors e, . Futhermore, we define the vector

()

Pimitmr = _inQf(Q)AY(Q)ImY(Q)I’m'

X b V(kE(Q)), n(Q),, (7.5)

which is a surface integral over the region A. It is the inte-
grated normal vector n(f), times the appropriate weight
functions. This vector pj), depends only on the shape of
the surface. After these preliminary definitions, we can write

for the reflected fields

E(r) — E(r)i™
£ > Bimrm Sia Vitkr) Y},
€ iml'ma
—iwukl lzipfi’lm XIRDjCkr) Y(Q) ¥, (7.6)
B(r) — B(r)i™
=pk Y 0w XTIV Y( Q) . (17)

Imi'm'A

These explicit expressions for the fields that are emitted by
the surface charge and current distributions exhibit a clear
separation between the source terms S{2’ and I{" and the
redistribution, due to the surface geometry, which is ac-
counted for by the vector p{).,,.. The spatial distribution is
represented as an expansion in the spherical waves j(kr),
Y(Q)¥, and Vj(kr), Y, (2)*.

Vill. SURFACE MULTIPOLES

We can elucidate the significance of the expansions
(7.6) and (7.7) for the reflected fields by the introduction of
the surface multipoles. To this end we define the multipolar
moments of the charge and the current distributions as

=_ Z pfllrr)n Jdm " Iu'n)l’r (8'1)
€ I'm'a

Jim =k 3 D1 XTI, (8.2)
1'ma

where C,, is a scalar and J,,, is a vector. These multipolar
moments represent the charge and current distribution of
the complete surface, not just in one region A. The emitted
fields now attain the form

E(r) —E()™ = C,,Vjkr), Y(Q)},
im
—iwy 3, jkr), YD)}, (8.3)
Im
B(r) —B()™ =Y J,, XVi(kr), Y(Q)},, (8.4)
Im

which greatly resembles the multipole expansion of the fields
emitted by a charge and current distribution in a restricted
region of space. The distinction is of course that the source
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terms C,,, and J,,, here gain contributions from everywhere
in space, rather than from a localized area. This results effec-
tively in an exchange of the spherical Bessel function
h"W(kr), with j(kr), in the expansion of the Green’s func-
tion.

The surface multipolar moments C,,, and J,,, are not
independent. From the fact that the fields obey Maxwell’s
equations, as they do by construction, it follows that they are
subject to some constraints. From V+(E(r) — E(r)"™) =0
we readily derive the relation

i‘/aclm

1—1

S

S Umlril —1u)J, _ ,ve*

=1 u- ;:—n -

141
AL S S Um0, e,
2l +3 p="0+1 "
(8.5)

+

for a spherical basis set e.. Here (/ml7|l + 1u) denotes a
Clebsch—-Gordan coefficient. The constraint (8.5) can be
considered as the surface-integrated form of charge conser-
vation (V+j = jwp) for the surface charge density o(r).

IX. CONCLUSIONS

We have studied the charge and current distributions on
the boundary of a perfect conductor with a dielectric, as they
are confined and redistributed there by an externally applied
electromagnetic field. The surface was allowed to have an
arbitrary shape, and we did not impose any periodicity con-
dition. We obtained closed-form and exact expressions for
o(r) and i(r) everywhere on the surface. This was accom-
plished by deriving a set of inhomogeneous Fredholm equa-
tions of the second kind for o(r)n(r) and i(r) Xn(@x) from
Maxwell’s equations, and subsequently solving these equa-
tions by an expansion on a discrete spherical set of basis
vector functions. The solution involves surface-structure
matrices, the R-matrices, which are independent of the inci-
dent field. It appears that an operation of a resolvent (1-
R) ™" on the vector representation of the impinging field on
the surface yields the charge and current distributions. The
Faraday induction between the E and the B fields gives rise
to a coupling between the equations for o(r)n(r) and
i(r) Xn(r), and it was accounted for by the matrix R ®.

Next, the structure of the fields, which are emitted by
the oscillating charges and currents, was examined. The so-
lution was cast in the form of a spherical multipolar expan-
sion, and the multipolar moments were identified explicitly
in terms of the solutions for o(r) and i(r). The effect of the
surface geometry could be incorporated entirely by the ap-
plication of a surface-integrated normal-direction matrix
P - In addition, it was shown that the multipolar mo-
ments for the charge and current distributions are related,
which reflects the charge conservation on the surface.
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APPENDIX: DISCONTINUOUS INTEGRALS

The integrals on the right-hand sides of Egs. (3.1) and
(3.3) are discontinuous if we pass r* across the surface.
Therefore, care should be taken in the evaluation of the limit
r* —r. In this appendix we give the details of the derivation
of Eq. (3.1). Then the results (3.2) and (3.3) are obtained
along similar lines. The limit to be found is

Int :fdA To(r)e*It (et — )

ik 1 ]
X - »
[|r+—r’|2 rt —r'}?

withr* =r + n(r)& and §10. To this end we divide the sur-
face into a small circle with radius R and around r and the
remainder of the surface. This is illustrated in Fig. 2. For the
integration over the region outside the circle, the integrand
has no singularities, and we can replace r* by r. Inside the
circle, however, the factor in curly brackets is singular for
r™ —r'. This implies that we have to carry out the integration
before we take the limit §10. This can be done as follows.
First, for r’ inside the circle we can write

(AD)

(A2)
(A3)

since these functions vary negligibly over the singularity.
Next, we writert — r' = (r — r’) + n(r)8 for the vector in
front of the brackets. Then we notice that the integral with
r — r’ vanishes because of the cancellation of contributions
fromband — b (see Fig. 2). This component disappears for
every 5,‘ and therefore also in the limit 6§10, which leaves us
with

o(r')=o(r),

eik\r vr\zl,

Int:J-dA "o(r')VG(r,r)

ik _ 1
|r+—r’\2 |r+_r/|3 :
(A4)

From Fig. 2 we see that [r* —r'|> = [r — r'|2 + 6% After
substitution into the integrand, the integration is most easily
carried out in polar coordinates, which yields

ik 1
4 [ d _ ]
Circ]e ’r+ _r,lz Jr"— _r’f3

= 2{1ikS log(R? + 8%) — ikS log &
+8/(R*+8)"*— 1}

+a(r)n(r)6f

inside

a’ |

circle

inside

(A5)
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FIG. 2. Geometry for the evaluation of the limit r™ —r. Around r on the
surface, we divide the surface into an infinitesimal circle of radius R, and the
rest of the surface. Then the integrals are split up accordingly. The normal
vector points from the surface into the dielectric and is multiplied by § > 0.
Wedenotedr* —r'byaandr — r' by b. The limit r* —r implies R>6 >0
and R—0. It appears that an integral over the small circle remains finite
whenever the gradient of the Green’s function occurs in the integrand.

In the limit R>6 >0 and R0, this integral acquires the
finite value of — 24, and its combination with Eq. (A4)
gives expression (3.1), which was to be proved.
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