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Photon statistics of fluorescence radiation
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Abstract. We study the general properties of the photon statistics of
fluorescence radiation, emitted by a two-level atom in a strong laser field and a
perturber bath. We investigate the deviation of the factorial moments from a
Poisson distribution, and we show that for long counting times the lowest-order
correction can be expressed entirely by the quantity A, which represents the
deviation of the variance from the average. We introduce and evaluate the
quantities f(t), which serve as a measure for the deviation of the higher-order
statistics from Poissonian statistics. Subsequently we obtain explicit expressions
for the average waiting time for the appearance of the nth photon, after an
arbitrary initialization of the counting process. It turns out that the average time
delay is again determined by Q. Hence this parameter can be measured in a
photon-counting experiment, which involves only the observation of a single
photon, rather than an (in principle) infinite number of photons.

1. Introduction
We consider a two-level atom in a strong single-mode laser field, and surrounded

by a perturber gas. The incident laser photons are scattered by the atom as dipole
radiation [1-3]. The statistical distribution of the emitted photons is determined by
the dynamics of the atom and its interaction with the laser field, and is modified by
collisional effects. Temporal photon correlations and the photon statistics therefore
carry information on the dynamics of the radiating system. In particular, it is well
known that fluorescent photons tend to be emitted separated in time, this is termed
antibunching. This characteristic feature of fluorescence radiation can be under-
stood immediately from the mechanism of photon emission. After an emission, the
atom is bound to be in its ground state, which prohibits a second photon being
emitted immediately afterwards. Conversely, long after the first emission the
memory of the system will be lost, and the probability for an emission will become
independent of the initial one. Hence the conditional probability f(t)dt for an
emission in the time interval [t, t + dt], after an emission in [-dt, 0], will have the
properties

f(0) =0, f (o0) =I, (1)

with I the intensity, or Idt the unconditional probability for a photon emission in
[t, t + dt]. The function f (t) has been evaluated by several methods [4-6], and has
been measured in an atomic-beam experiment [7-9]. The notion of antibunching
and its physical significance was reviewed by Walls [10] and Paul [11].



H. F. Arnoldus and G. Nienhuis

Besides the two-photon correlation function f(t), we can also consider the
statistics of the emitted photons. If the process of photon emission were completely
random (a Poisson process), the average number of photons /(t), emitted in the time
interval [0, t], would equal the variance a2 (t) of the photon-number distribution.
Since fluorescent photons are correlated, the photon statistics will deviate from the
Poisson distribution. In order to study this feature of fluorescence radiation, Mandel
[12] introduced the Q(t) factor, which is defined as

O2 (t) = p(t) [1 + Q(t)]. (2)

Since the variance is non-negative, we have the constraint Q(t) > - 1 for any photon
distribution. For a Poisson distribution we have Q(t) = 0, and if the radiation field
would have a classical analogue, we would have the restriction Q(t) > 0 [12].
Therefore, Mandel stressed that any observation of Q(t) < 0 would indicate that the
fluorescence radiation field is essentially a quantum field. A negative Q-factor reflects
sub-Poisson statistics, which means that the variance is smaller than the average. We
pointed out in a previous paper [13] that a negative Q-factor results from an average
antibunching of the photons and we evaluated its limit for long counting times,

Q = lim Q(t), (3)

in terms of the atomic parameters. The behaviour of Q(t) as a function of time was
obtained by Singh [14]. Short and Mandel [15] measured Q in their beam
experiment, and indeed it appeared to be negative.

The Q(t) factor from equation (2) measures the deviation of the variance from its
Poissonian limit. In this paper we will extend this idea to the higher-order statistics.
It will appear that the deviation from Poisson statistics, in the limit of long counting
times, is again determined by Q. Hence an accurate determination of the photon
statistics of atomic fluorescence requires the measurement of Q as a function of the
atomic parameters (dipole strength, laser intensity, laser linewidth, etc.). This
experiment is rather difficult, because the large number of photons, which are
detected in [0, t] with t -- oo, must all be emitted by the same atom. In this paper we
propose a different experiment for the measurement of Q, which involves only the
observation of a single photon.

2. Counting statistics
The number n(t) of detected photons in [0, t] is a stochastic function of time. If

we denote by Pn(t), with n = 0, 1, 2, ... , the probability for the detection of n photons
in [0, t], then we have the obvious properties

0 < P(t) < 1, E Pn(t) = 1. (4)
n=o

The average and the variance of the photon-number distribution can be written as

(t) = <n>(t), a2(t) = <(n - n>)2 >(t), (5)

where the angle brackets indicate averaging with the set of probabilities P,(t). The
factorial moments,

o n!
Sk(t)= ( )! n P,(t), k = 0, 1,2,... (6)

n lk (6-k)'

692



Photon statistics of fluorescence radiation

which gives in particular

So(t) = 1, S1 (t) = /(t), S 2 (t)- S (t)2 = o2(t) - #(t), (7)

are quite convenient for the study of the deviation from Poisson statistics. According
to (2), Q(t) can be expressed in S1(t) and S2 (t).

Next we introduce the generating function [16]

G(x; t) = <x">(t) = I xPn(t), (8)
n=O

so that the x-dependence of G(x; t) determines the set P,,(t) as the Taylor coefficients
in an expansion around x = 0. On the other hand, if we differentiate G(x; t) k times
with respect to x, and subsequently set x equal to 1, we obtain precisely expression (6)
for the factorial moments. So the Sk(t)s are the Taylor coefficients of G(x; t) around
x = 1 and we can write

(x -)k
G(x; t) = Sk(t). (9)

k=O

A comparison of (8) and (9) yields

P"(t) = !SE---. n+k(t) (10)

which is the inverse formula of equation (6). Both the sets Pn(t) and Sk(t) determine
the statistics completely.

We introduce another quantity, defined as

F(x; t) = exp [(1 - x)p(t)]G(x; t). (11)

The Taylor expansion around x = 1

Ft (x-1).
F(x; t) = Y ( !),(t), (12)

n=0

defines the set f,#(t) for n = 0, 1, 2 .... The relation between fin and Sk is obtained by
substituting expansion (9) for G(x; t) and taking the nth derivative. If we then set
x = 1 we find

fln(t) = (k)(-(t))-Sk(t).(13)

In a similar way we obtain from the Taylor expansion of G(x;t) = F(x; t)
x exp [(x- 1)#(t)] the inverse equation

S"(t) = ()(t)-kfk(t) (14)

which shows that a given set fl,,n(t) also fixes the statistics. From (13) we find in
particular

/3o(t) = 1, fll(t) = 0, 132 (t) = a2 (t) - (t), (15)

so that #2 (t) is related to the Q(t) factor.
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3. The Poisson distribution
The Poisson distribution is defined as

Pn(t) =- - exp (-(t)) (16)
n!

in terms of an arbitrary function (t) > 0. From (6) we then find the factorial
moments to be

Sk(t) = U(t) (17)

and with (8) we obtain the generating function

G(x; t) = exp [(x - 1)u(t)]. (18)

The function F(x; t) and the J,3(t)s are then

F(x; t) = 1 (19)

n(t) = n,0 (20)
This clearly reveals the significance of the set fi,(t): a non-zero value of fln(t)(n > 1)
reflects a deviation from Poissonian statistics. Especially a non-zero 2 (t) is
equivalent to a non-zero Q(t), so the definition of the f#(t)s can be viewed as a
generalization of the Q-factor (apart from a normalization). Furthermore fn(t) is
determined by S1 (t), ... , S(t) and does not depend on higher-order moments. This
implies that the series fl(t) describes successively the deviation of Sn(t) from their
Poissonian value (17). For n = 1 we have S1 (t) = #(t), so that l (t) = 0 by definition.
For n = 2 we have

fl2 (t) = ,(t)Q(t) (21)

S2 (t) = Sl(t)2 + fl2(t). (22)

4. Random events
The process of photon counting can be regarded as the observation of dots or

random events on the time axis. The statistics of these events is determined by the
Stratonovich distribution functions Ik(tl, ... ,tk) (k > 1), where Ik(tl, ... , tk)
dt, ... dtk is the probability for the occurrence of an event in [t1 , t + dtl], ... and an
event in [tk, tk + dtk], irrespective of possible events at other times [17]. The set of
distribution functions determines the factorial moments according to

fo nk t2

Sk(t) = k! dtk dtk-1 ... dtlIk(tl ... , tk) (23)

and thereby the complete statistics of the number of events for each value of the
counting time t. From (23) we find the initial values

Sk(O) = bk,O, P(0) = bn,0, n(O) = n,0 . (24)

Suppose we have a classical stochastic electromagnetic field with intensity (t)
incident upon a photomultiplier tube. Then the distribution functions are given by
the intensity correlation functions [18, 19]

Ik(tw .. . tk) = (tl) ... (tk), ) (25)

where {... ? denotes an average over the stochastic process (t). The average number
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of events for a given realization of 6(t) is

f(t) = f f(s) ds (26)

which itself is a stochastic process. With (23) we then find the factorial moments to be

Sk(t) = ((t)k), (27)

and in particular

Sl (t) = I(t) = (i(t)}. (28)

If the incident field f(t) is not stochastic, we have p(t) = A(t), so Sk(t) = X(t)k, and the
number of events has a Poisson distribution.

With equation (13) we now find

/M.(t) = ((j(t) - p()")}, (29)

which reduces to P.(t) = n..o for a non-stochastic field f(t). From equation (29) we
immediately find the restriction

P/i(t) > 0 for n = 0,2,4,... (30)

for photon detection from a classical field. This generalizes Q(t) > 0, which is (30) for
n = 2. Notice that equation (29) sets no lower bound for n odd.

5. Fluorescence radiation
The photon statistics of fluorescence radiation, emitted by a two-level atom, is

governed by the conditional probability densityf (t) for a photon emission at time t,
after an emission at time zero. Thisf (t) equals the population of the excited state at
time t, with the condition that the atom is in the ground state at time zero. We
suppose that the atom has spent a sufficiently long time in the laser field, so that it has
reached a steady state. Then the distribution functions for the photon emissions are
given by [5, 20]

Ik(tl, tk) f(tk -tk-1) . f(t 3 -t 2 )f(t 2 -tl)I, k > 1 (31)

for t > ... > t, and I,(t) =I. From (23) we find the average number of detected
photons in [0, t] to be

/(t) = Sl (t) = It. (30)

The second factorial moment is

S2 (t) = 2I f (t - z)f (T) d (33)

and combination of (32) and (33) determines the Q(t)-factor [13].
The higher-order statistics is most easily found in the Laplace domain. If we

make the transformation

;.(s) = fo exp (-st) Pn(t) dt, (34)

and similarly for other time-dependent quantities, then we find from (31) and (23)
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the factorial moments [21]

1 P k! [s) k -

So(S) 1S k- ! 1. (35)

With (10) we obtain the probabilities

1 1 I

s 7(s)
Pn(S)=s2 + f() P.(S) =2 ( + s ))+ I, n 1(36)

and the generating function

1 1 (x -1)I
G(x; ) = - + (37)

1 - (x- 1)f(s)

follows from (9). The relation (11) between F(x; t) and G(x; t) is in the Laplace
domain

F(x; s) = (x; s + (x-1)I). (38)

These results determine the photon statistics of fluorescence radiation.
The property f (oc) = I from equation (1) becomes in the Laplace domain

lim sf (s) = I. (39)
so0

This implies that we can write

sf() = I + (s) with (0) = 0, (40)
I

which defines the function i(s). With (40) we can expand Sk(s) from (35) around
s = 0, and the Laplace inverse then corresponds to an expansion of Sk(t) around
t = oo. This yields the factorial moments for long counting times

Sk(t) =(It)k(1 + (9(t 1 )), t -oo. (41)

The leading term (It)k is the Poisson limit, which will be reached for t sufficiently
large. The vanishing component (9(t-') accounts for the deviation from Poisson
statistics. Expansion (41) indicates that a deviation from Poisson statistics will be
difficult to observe in a photon-counting experiment, in which simply the number of
photons in [0, t] is registered.

For later purposes we recall that Q can be expressed in R(s) as [13]

d
Q = 211im-(s). (42)

S-o ds

6. Deviation from Poisson statistics
It was pointed out in § 2 that non-zero values of fi,(t) for n > 2 indicate a deviation

from a Poisson distribution. In this section we will evaluate n(S) explicitly. The
Laplace transform of (13) reads

#n(S) = ()Sk(s) (43)
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If we now substitute Sk(s) from equation (35), apply equation (40) and perform the
summations, we find

bnO n!Pn
n-2 Sk dk (s)n-k +(S)(_l)n-k

s s + k=-O k! dsk 1 + (s) (

which can also be written as

, n! ~
n-2 n-k- ( 1)n+k+ S k dk (45)

s k=Ol 1= k )f kI

Here the summations account for the deviation from Poisson statistics.
The behaviour of #,B(t) for t + o is governed by the expansion of (45) around

s = 0. From

kd R(s), = C(Smax(kj)) (46)

we find P.(s) = bn o/s + 6(s-n), which corresponds to fln(t) = n , + 0(tn- 1). This also

follows from a substitution of (41) into (13), since the Poisson terms cancel. We will
now show that the fln(t)s do not diverge as (9(t'-1) for t -* co, but much slower, due to
the exact cancelation of many low-order terms in equation (45).

To this end we notice that

.t 5k dk
E ( 1 SRkg(S) = ( a(0)) = , (47)

Then we can write equation (45) as

an(s) 6 n,o (- Wn!P n- i 5kdk (48)

and with (46) we find that the double sum behaves as (s') with n' = -n for n even and
n'= A-n + for n odd. The lowest order contribution in s then follows from k = I = n'
for n even. For n odd however, the three terms with k = 1 = n', k = 1 + 1 = n'
contribute. If we define the Taylor coefficients of R(s) as

dn
= lim ).s(s), (49)

s kdn

then we can expand (48) around s = 0 in terms of the Cs. Keeping only the lowest-
order terms and transforming back to the time domain then yields the long-time
behaviour of 13n(t). We find

2k(t) = (I2t)k(1 + (t- 1))

(k-i)! ' '
#2k+1(t)= (=k +)!(J24 t)kIi(+ 2+i2}k + C(t 1))

(k~~~~ ~ - 1)k / C.2 )S f~s

for k = 1, 2, 3.... Hence the dn(t)s grow as ( _(ts/2) for n even and as 0(tn/2 1/2 ) forn
odd.

With (39) we notice that

Q = 2Ig, (51)

sorde g h e rm ang trmin b2k(t) is completely determined by Q. The long-time
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behaviour of ,.(t) for n odd however, involves also the parameter 2 For photon
detection from a classical field, we have the constraint (30) for fin(t) with n even. Sub-
Poisson statistics is usually defined as a violation of the inequality (30) for n = 2.
From (50) we then find that (30) is also violated for n = 6,10,14,..., but not for
n = 8,12,16 .. .

Substitution of (50) into (14) gives the long-time behaviour of the factorial
moments. We find

Sk(t) = I(t)k(1 + k(k - 1)Q/2It + C(t 2 )), t (52)

for k = 0,1,2,.... This result expresses that the asymptotic deviation from Poisson
statistics of the factorial moments is completely determined by Q.

7. Waiting times
The set Pn(t) for a given time t gives the probability for the detection of n photons

in the time interval [0, t]. From the time dependence of Pn(t), we can deduce the
probability distribution for the detection time of the nth photon. To this end, we
introduce the probability densities wn(t) as [16]

wn(t) dt = probability that the nth photon is detected in [t, t + dt], n > 1, (53)

which is identical to the probability for the detection of n - 1 photons in [0, t] and
one photon in t, t + dt]. From the fact that we can only detect one photon or no
photon in an infinitesimal time interval, we derive immediately the relations

d
-Po(t) =-wl(t),

d
d
- Pn(t) = wn(t)-wn+ (t), n 1. (54)
dt

The solution of these equations is

d n-l

wn(t) = -- o Pk(t), (55)
dtk=O

which expresses the wn(t)s with k < n. The inverse relation follows from integration
of(54)

Po(t) = 1 - f wl(t) dr,

Pn(t)= f wn(z)dT - wnd+l(r)d n 1 (56)

so the set wn(t) also fixes the statistics.
From (53) we have the obvious interpretation

| W~(T) dr = probability that the nth photon is detected in [0, t], (57)

and with (55) we find

{wnrt dr= I -Z~k~t)=n-I) (o
wn(t) d = 1 - Pk(t) = Y Pk(t), (58)

fo k=O k=n
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which expresses that the probability to detect the nth photon in [0, t] equals the
probability to detect n or more photons in [0, t].

The set Pn(t) is uniquely related to the set Sk(t), so the set wn(t) must also be
uniquely related to the set Sk(t). With (6) we find

sO(t) = 1,

Sk(t)= k (+m k-1)! w +()d ' k>1, (59)
m=0 m! f

which has the inverse relation

I (m + k-1)!|Wk(T) d ( = 1 E (l)m + S +k(t)- (60)
wfo) d (k - 1)! -- 0 m! $~~)

The generating function G(x; t) becomes in terms of wn(t)

x-1 0 1 "
G(x; t) = 1 + xm Wm() dT. (61)

X m=i 

Let us consider the Poisson distribution (16). It is easy to check that the P.(t)s
obey the relations

d
-Po(t) = -I(t) PO(t),
dt

d Pn(t) = - I(t) (Pn(t) -P. -(t)), n > 1, (62)
cit

with I(t) = du(t)/dt. If we substitute this into (55) we obtain

w.(t) = P.- (t) I(t)- (63)

This expresses that the probability for the detection of the nth photon in [t, t + dt] is
proportional to I(t) and independent of the previous n- detections. In other
words, the photon detections are uncorrelated.

An interesting quantity will appear to be the average elapsed time before the nth
photon is detected. If we define the waiting time as

Tn = fo t w"(t) dt (64)

then we find with equation (55)

n-l (X
Tn= Z I Pk(t) dt, (65)

k=O JO

or in the Laplace domain

d n-i
T =-lim-W-(s) = E Pk(0)* (66)

s- ods k=O

The variance of the waiting time for the nth photon is

AT,2 = fo (t - Tn)2 n(t)dt, (67)
'O
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and with (55) this can be expressed in Znv(s) or Pk(s) as

A d 
2

n-d' d ~
AT 2 limS a3(s) T,2 = -2 lim-Pk(s)- T 2 . (68)

s 5 ods2 k=0s ods

8. Fluorescent photons
In this section we evaluate the vZ(s) and the waiting times for photon detection

from fluorescence radiation. If we take the Laplace transform of equation (55) and
substitute the result (36), we obtain

i.(s)- s +f(s)) ( ) n (69)
SO ~ '+ f(s)./ ' (

which can be written as

z3(S) = s(1 + 7(s)) P,(s), n > 1. (70)

For n = 1 we have the alternative form

vl (s) = 1 -PO(S) (71)

as follows from (54).
From (36) and (39) we find

1 QI' 21
-°°) I+ I

P.(0) = I Xn > 1 (72)

and with (66) this gives

nQT. + Q (73)
I 21

For n = 1 we have the inverse relation

Q = 2(IT1 -1). (74)

Hence Q can be determined from a measurement of the average waiting time T1 for
the appearance of the first photon. This should be much easier than the measurement
of p(t) and o2 (t) for t --* co, as it is commonly done. Notice that the constraint Q >-1
sets the lower bound to the waiting time

T, > 1/21 (75)

but for classical fields (Q > O) we have

T, > 1/I. (76)

Hence a waiting time which is smaller than 1/I reflects sub-Poissonian statistics, and
thereby the non-classical behaviour of fluorescent photons.

The measurement of T1 determines Q, and thereby the asymptotic behaviour for
t- - of Sk(t), according to equation (52). Combination of(51) and (74) gives

1
T, - T- I (77)

and this parameter governs the asymptotic behaviour of the normalized quantity
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f2k(t). The behaviour of the #,(t)s with n odd involves the second independent
parameter C2, which is not determined by T1 . It can however also be found from the
waiting-time distribution. To this end, we consider the variance A T2,. From (68) and
(69) we find immediately

ATn2 = -C 2 + Tn + (n/1)Tl (78)

for the variance of the waiting time for the nth photon. For n = 1 this equation reads

C2 = T 2 -AT2. (79)

This shows that T1 and ATI2 determine C, and 2, and thereby the asymptotic
behaviour for t oo of fin(t) for all n. It will be obvious that we can generalize this
procedure to obtain the Cn for n = 1, 2, 3,... from the waiting-time distribution w"(t).
Hence the complete photon statistics for t -+ oc can be found from the measurement
of the time delay of the first photon, after a random initialization of the counting
process.

9. Conclusions
In this paper we elaborated the theory of photon statistics of fluorescence

radiation, with particular emphasis on the deviation from Poisson statistics. This
was accomplished by the introduction of normalized quantities fi(t), which vanish
identically for a Poisson distribution (n > 2). We evaluated n(s) explicitly and we
studied its behaviour in the limit of long counting times. It appeared that the first
term in the asymptotic expansion of 2 (t), 3 (t), ... around t = oo, involves only the
two independent atomic parameters C, and C2. Here C1 is proportional to the familiar

c-factor. Furthermore it is shown that the deviation of the factorial moments from
their Poisson value Sk(t) = P(t)k, is determined by Q) for all k in the limit t -* c.

Subsequently we considered the distribution w,,(t) of the waiting time for the
appearance of the nth photon. We evaluated the average waiting time T and the
variance AT, 2. It was pointed out that T1 and AT?2 determine the parameters C, and
C2. Thus the asymptotic limit t-- oo of the photon statistics, which corresponds to
the detection of an infinite number of photons, can be found from the measurement
of the distribution of the detection times of the first photon.
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