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Abstract. In this paper the fluorescence radiation, emitted by a two-level atom in a perturber 
bath, is considered. The atom is driven by a single-mode laser with a Lorentzian profile, 
which is brought about by a fluctuating phase. The stochastics of this phase is taken to 
be the Markovian random-jump process. We derive explicit expressions for the atomic 
density matrix, the temporal photon correlations and the fluorescence spectrum. The results 
greatly resemble the results for a non-Gaussian diffusive phase, but deviate slightly from 
the corresponding expressions in the Wiener-LCvy limit of the diffusion process. 

1. Introduction 

In the last decade considerable effort has been made to include the effects of the finite 
laser linewidth in the theory of resonance fluorescence. The broadening of the single- 
mode laser line around the optical frequency wL is considered to be accomplished by 
a stochastic phase 4 ( t ) .  The electric field at the position of the atom 

E ( t ) = E o R e  E ~ e x p [ - i ( W ~ . f + 4 ( f ) ) ]  (1.1) 

gives rise to the laser profile 

exp[i(w - w,)~]+exp[-i(4( t + T) - 4(  t ) ) ] +  d.r (1.2) 

where + . . . + denotes an average over the stochastic process 4 (  t ) .  The stochastics 
of + ( t )  or its derivative $ ( t )  are assumed to be given, and the issue is always to 
average the equation of motion for the state of the atom and for the fluorescence signal 
over the stochastic process. Usually the phase + ( t )  is taken to be the Wiener-LCvy 
process or equivalently, $ ( t )  is taken as Gaussian white noise (Kimble and Mandel 
1977, Avan and Cohen-Tannoudji 1977, Agarwal 1978, Zoller 1978). The equations 
occurring can then be averaged using the method of Fox (1972). A generalisation to 
a non-Gaussian diffusive phase has been given by Arnoldus and Nienhuis (1983a), 
and Dixit et al (1980), Zoller et al (1981) and Yeh and Eberly (1981) assumed the 
process $ ( t )  to be the Ornstein-Uhlenbeck process, which has the white noise as its 
Lorentzian limit. 

The question can be raised whether these diffusion processes properly describe the 
finite bandwidth of the laser and if not, how sensitive the atomic response is to the 
details of the stochastics of 4(  t ) .  Therefore Eberly et a1 (1984) considered the phase 
as a random telegraph, which can perform jumps between two values, and this model 
was extended by Deng and Eberly (1984) to the N-state jump process. These models, 
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for which the phase can only assume a finite number of discrete values, are obviously 
not realistic. Furthermore these authors only find numerical solutions, which are hard 
to compare qualitatively with the diffusion models. In this paper we consider the 
phase as a Markov jump process, defined on the continuous range (-n-, n-), which can 
be regarded as the limit N + CO of the N-state jump process. The equations occurring 
are averaged exactly and explicit expressions for the state of the atom, the fluorescence 
spectrum and the two-photon correlation function are obtained. 

2. The laser-phase stochastics 

The stochastic process 4( t )  is defined as a stationary Markov process on (-n-, T I ,  for 
which the transition rate from 4 to 4' is independent of the value 4 before the 
transition. This random jump process is sometimes referred to as the Kubo-Anderson 
process (Kubo 1954, Anderson 1954). The conditional probability for 4 ( t +  T )  = q5z if 
+( t )  = 41 is then given by 

PT ( 421 41 = exP(-A7) 6 ( 42 - 4 1.1 + I 1 - exP(-A 7)  I P (  $2) 7 3 0  (2.1) 

in terms of the arbitrary probability distribution P (  4)  and the transition rate A, which 
gives rise to the correlation time A- '  > 0. With (2.1) the laser profile is found to be 

with the single-time average +exp( i+) t  = 5 d 4  P (  4) exp(i4). For a fixed value of the 
phase, e.g. P( 4) = 6( 4 - +,,), the Lorentzian part vanishes, but in general we will have 
a monochromatic component of the order of S(w - wL) and a Lorentzian with HWHM = 
A. The term 6 ( w  - w L )  appears only if the phase has preferred values, as in the case 
for the random telegraph and the N-state jump process. From now on we will assume 
a uniform distribution 

P ( 4 )  = 1/2n- (2.3) 

which yields +exp(iq5)$ = O .  Hence the laser profile is a pure Lorentzian, and the 
electric field (1.1) with this stochastics is known as the Lorentz wave. We remark that 
the assumption (2.3) is not necessary to solve the problem. All further calculations 
can equally well be performed for an arbitrary P(+) ,  which might be a discrete 
distribution. 

The results in this paper will be compared with the corresponding expressions for 
the diffusive phase. The independent-increment process 4 ( t )  with -a< 4 ( t )  < CO is 
defined as a Markov process with (Van Kampen 1981) 

00 

1 2 0  (2.4) P(4, t )  =F 
where w ( ~ ) 3 0  is the transition rate from 4 to 4 +  7. We will assume the symmetry 
relation w ( - 7 )  = ~ ( 7 ) .  The conditional probability follows from (2.4) as 

1 "  
exp( - i ~ 4  - t [1  - e x p ( i p ~ ) l w ( g )  d 7 )  dp 

n- -m 

PA42141) = P(42-4197) 7 2 0  (2.5) 

and hence the stochastics is fixed by the function w(q), which is supposed to be given. 
This non-stationary process +( t )  is obviously different from the random-jump process, 
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as follows from a comparison of (2.1) and (2 .5 ) .  The laser profile however, is again 
a Lorentzian, where A now follows from w ( 7 )  by 

m 

A = I_, (1 --os rl)w(77) d77. (2.6) 

In the Gaussian limit of (2.4) we obtain 

P (  4, t )  = (2rra2( t))-1'2 exp( - +2/2a2( t ) )  
with 

m 

772~(77)d77=2At. 

This special case is the more familiar Wiener-LCvy process. 
The multiplicative stochastic differential equations have been averaged for the 

random-jump process by Brissaud and Frisch (1971,1974), Shapiro and Loginov (1978) 
and for the independent-increment process by Arnoldus and Nienhuis (1983a, b). The 
correlation functions of the fluorescence field, which determine the spectral distribution 
and the temporal correlations of the photons, involve two-time averages. These averages 
factorise for the diffusion process, but for the random-jump process care should be 
exercised that the initial correlations are taken into account properly. We solved this 
problem recently (Arnoldus and Nienhuis 1986), and the results of the present paper 
will rely on equation (5.8) of this previous paper. 

3. The state of the atom 

The density operator p( t )  of a two-level atom in the strong laser field (1.1) obeys the 
equation 

ih dp/dt = [Ha,(t), p ] - i h r p  - ih@p 

Haf( t )  = -hwoPg -ihCl{d exp[-i(wLt + +( t ) ) ]  + HC} 

(3.1) 

(3.2) 

where the atomic Hamiltonian and the interaction is given by 

in terms of the transition frequency wo between the states ( e )  and lg), the projector on 
the ground state P, = Ig)(gl, the raising operator d = le)(gl and the Rabi frequency 
Cl = EOpeg * eL/ h of the dipole coupling. Spontaneous decay and collisions with 
perturbers are represented by the Liouville operators r and @, defined as 

I 'p  = +A( Pep + pP, - 2d 'pd ) 

@ = YL; - ipL, 
(3.3) 

with A the Einstein coefficient, P, = 1 - Pg = le)(el ,  and y and p the collisional width 
and shift. The operator L, is defined as 

L,P = [Pg, PI. (3.4) 

An equivalent representation of the equation of motion follows after the transfor- 
mation 

a( t )  = exp( -iwLtLg)p( t ) .  (3.5) 

i d a / d t  = { L , - i ~ - i @ + B [ e x p ( - i ~ ( t ) ) - l ] + C [ e x p ( i ~ ( t ) ) - l ] } a  (3.6) 

We then obtain 
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where we have introduced the operators B and C as 

B u  = - iR[d,  U ]  C U = - $ R [ ~ ~ ,  U ]  (3.7) 

Ld= AL,+ B +  C A = w , - w , .  (3.8) 

and the dressed-atom Liouvillian 

The operators B and C, as they appear in (3.6), account for the laser bandwidth and 
an average over the process + ( t )  will yield the atomic state + c r ( t ) + .  

The averages over the random-jump process zre conveniently described by the 
Liouville operator 

F(w' 'I = w +iA - L,+iT+i@ - B[exp(-i4) - 11 - C[exp(i') - 11 

which depends parametrically on 4, and the single-time average 

1 
(3.9) 

G ( w ) = l  F ( w ,  4)  d4.  (3.10) 27r -~ 

If we adopt the Laplace transfcjrm 

6 ( w )  = exp[iw( t - to)]+a( t ) $  d t  I,: (3.11) 

and assume a given non-stochastic initial state U (  to) ,  then the average of the equation 
of motion (3.6) becomes (Brissaud and Frish 1971, 1974) 

(3.12) 

The Laplace inverse of this expression equals the atomic state +IT( t ) +  for 13 to, and 
the stationary state 

(3.13) 

is obviously the unique solution of 

(1-AG(O))@=O T r @ = l  @t = 6. (3.14) 

It is quite straightforward to evaluate the matrix elements of F ( w ,  4 )  from (3.9) 
with respect to the bare-state basis P,, P,, d, d t  of Liouville space. A subsequent 
average over 4 then yields the matrix elements of G ( w ) ,  which can be applied to solve 
(3.14). We find the atomic steady state to be given by the steady-state matrix elements 

1 2 1  ( z A + y + A )  
ne = ( e / @ . / e )  = 

(elelg) = 0. 

R2($A+ y + A )  + A [ ( i A +  y + A) '+  ( A  - p ) ' ]  
(3.15) 

This population ne of the excited state is identical to the result for the diffusion process. 
The steady-state coherence however, appears to vanish for the jump process, which 
was not the case for the diffusive phase. This can be understood from the fact that 
the coherence is proportional to the field amplitude via R exp(-i4( t ) ) ,  which averages 
out to zero for a uniformly distributed phase. The populations are determined by the 
field intensity C12, which is independent of the phase of the field. The dependence of 
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ne on the laser linewidth A arises due to a different mechanism. From (1.1) we notice 
that $( t )  effectively shifts the central frequency wL temporarily. The population also 
depends on wL through A = w L - w O ,  and hence a shift of wL with $ ( t )  alters this 
population. For small values of [AI the laser will be shifted out of resonance, which 
diminishes the excitation probability of le), and conversely a large detuning can be 
reduced by $ ( t ) ,  which enhances the population of le). Notice that An, is the total 
number of fluorescent photons, emitted per unit time, which is also equal to the rate 
of photon absorption from the field. Hence n, determines the absorption profile, as 
measured by the fluctuating field. 

4. Photon correlations 

In this section we study the time-resolved correlations between the spontaneously 
emitted fluorescent photons. The steady-state field intensity, expressed as the number 
of emitted photons per unit time, can be written as 

1, = A Tr R 6  = An, (4.1) 

(4.2) 
The I, is directly obtained from (3.15), and so we find that the emitted power is not 
affected by the change of stochastics of 4 ( t ) .  

The probability density for the detection of a photon at time t and a detection at 
t + T > t equals the field intensity correlation, which attains the form 

with R the photon emission operator 

R u  = d ' a d  = Pg Tr Pea. 

12( t, t +  T )  = A'lim r - a )  +Tr R Y (  t + 7, t ) R u (  t )+ (4.3) 

(Agarwal 1979, George 1981). This expression contains the evolution operator 
Y ( ~ + T ,  t )  for the density operator a, as follows from the equation of motion (3.6). 
The steady state is now implied by the limit t + CO, but for finite values of T we cannot 
replace a( t )  by 6, since the average does not factorise. If we introduce 

b ( ~ ) = l i m  r-m + Y ( t + 7 ,  t ) R a ( t ) +  (4.4) 

we can write (4.3) as 

12( t, t + T )  = A' Tr Rb( T ) .  (4.5) 

The initial value of b ( ~ )  equals 

b(0)  = R 6  = Psn,. (4.6) 
The stochastic average of (4.4) in the Laplace domain becomes 

(4.7) 

In general this cannot be written as an effective evolution operator, acting on the initial 
state Re.  This is due to the finite correlation time A-' of the jump process. If we 
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substitute the explicit forms of the operators R and F ( 0 ,  4 )  and of the density operator 
a, then we can prove the identity 

RAF(O,6)@ = RE (4.8) 
If we apply this result in (4.7), we obtain 

(4.9) 

Comparison with expression (3.12) for & ( U )  shows that b(7)  equals ne times the density 
operator at time T, provided that the atom is in the ground state at time zero. This is 
the familiar result for the intensity correlation (Kimble and Mandel 1976, Carmichael 
and Walls 1976). Now we can write 

(4.10) 

where f( T )  has the significance of the conditional probability for a photon detection 
at time 7 after a detection at time zero. The Laplace transform o f f (  T )  then takes the 
form 

M t ,  t +  7)  = I l f ( T )  

(4.11) 

and with the matrix calculus we obtain explicitly 

e iA iO’($A+ y + A  -iw) 
(4.12) 

This result is again identical to the result with the diffusive phase (Arnoldus and 
Nienhuis 1983b). Hence the time-resolved photon correlations are the same for both 
models of the stochastic laser field, which is remarkable indeed. 

=; O’((4A-t y + A -iw) + (A -iw)[(fA+ y + A --iw)’+ (A-p)’]’ 

5. The fluorescence spectrum 

Before we evaluate the fluorescence spectrum for the case of excitation with a Lorentz 
wave, let us recall the results for the independent-increment case. The expression for 
the spectrum I ( w )  can be extracted from a previous paper (Arnoldus and Nienhuis 
1983a), if the complicated collisional effects are simplified to the impact limit (3.3). 
Then we find 

+A A + A - i h  + [ iA+y+A -i(A-p)] 
+ A + A + y  A - i h  

) x [$A + y + A ’ +  i (A - p - A ) ]  (5.1) 

with h = w - wL and 

D ( h )  = 0 2 [ $ A  + y +:A’- i h )  + (A + A - iA)[iA + y - i (A - p +A)]  

x [$A+ y + A’+i(A - p -A)].  (5.2) 
Apart from the laser bandwidth A, a second parameter A ‘  of the stochastic process 
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appears. This parameter is defined as 
CD 

A ' = /  ( l - c o s 2 r ] ) w ( ~ ) d q  
-m 

(5.3) 

and comparison with the definition (2.6) of A yields the restriction 

0 < A t <  4A. (5.4) 

This A '  is an independent second parameter in general, but in the Wiener-Ltvy limit 
(the Gaussian limit) it is related to A as A '  = 4A. 

The fluorescence spectrum in the random-jump case can be derived along the very 
same lines as the two-photon correlation. If the driving field is stochastic with a finite 
correlation time, then the general expression for the steady-state fluorescence spectrum 
is (Arnoldus and Nienhuis 1985) 

I ( w )  =- lim Re exp(iAT)+Tr d t  Y ( t +  7, t)(a( t ) d ) +  dr. (5.5) A T t-w lom 
With the abbreviation 

a ( ~ ) = l i m  + Y ( ~ + T ,  t ) ( a ( t )  d ) + =  (5.6) 
t+m 

the spectrum (5.5) becomes 

A 
I ( w )  =- Re Tr dta"(A). 

7l 
(5.7) 

The initial value of the Liouville vector a ( T )  is 

a(0)  = S(T = (Td (5.8) 

which defines the action of the Liouville operator S. This clearly resembles (4.6). 
For the stochastics of the Lorentz wave we find 

and the initial correlations become 

$ A n  exp(i4)($A+y+A -i(A--p)) 
SAF(0, c$)@ = n,d - 

n'(fA+ y + A )  + A [ ( t A  + y + A ) 2  + ( A  - p) ' ]  pg 

(5.9) 

(5.10) 

If we set 4 = 0, then this is identical to the expression for S(T in the diffusion case. 
Now we can substitute (5.10) into (5.9), which yields &(A),  and with (5.7) we then 
obtain the spectrum I(@). It turns out that the result is identical to the solution for 
the diffusive phase (5,1), provided that we take A '  equal to A. This shows that the 
spectrum for excitation with the Lorentz wave is a special case of the general diffusion 
result, but that it differs from the Wiener-Ltvy solution, since then we have A'=4A. 

The structure of the spectrum I ( w )  does not depend much on the precise value of 
A ' .  In the low-intensity limit the spectrum is independent of A '  and for high intensities 
the spectrum has always three separated lines (Mollow 1969). The line strengths 
depend on A, but not on A '  (Arnoldus and Nienhuis 1983a). Only the lineshapes are 
sensitive to the value of' A'. This is illustrated in figure 1. Also in the limit of a large 
laser linewidth A, the A '  dependence vanishes in general. Thus it turns out that even 
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-6 0 6 
A M  

Figure 1. Plot of the fluorescence spectrum I ( w )  from (5.1) as a function of A = w - wL, 
with R = 5.4, A = 3.4, y = fA, p = 0 and A = A. The full curve corresponds to random jumps 
in the laser phase, so A ’ =  A, and the broken curve is the spectrum for a Gaussian diffusive 
phase ( A ’ = 4 A ) .  The peak on the right-hand side at wL is the elastic Rayleigh line. Its 
shape depends on A‘, but the integrated strength is independent of A’. The line near the 
atomic resonance w,, is the laser linewidth induced fluorescence line, which vanishes for 
A = 0. (Recall that for A = 0 the spectrum is symmetric around w = wL.) The shape of this 
phase fluctuation induced line is almost unaffected by the change of A’. The small slope 
in the right wing of the Rayleigh line is the appearance of the three-photon line, which is 
strongly suppressed by the phase fluctuations. 

with a spectral resolution, the atomic response is only slightly modified by this change 
of the stochastics of the laser field. 

6. Conclusions 

We investigated the scattering of photons from a stochastically fluctuating laser field, 
the Lorentz wave, by a two-level atom in the presence of collisions. The laser phase 
is assumed to perform random jumps at random instants, and the probability distribu- 
tion is taken to be uniform (and therefore time independent). The laser profile is then 
a Lorentzian. Closed expressions were obtained for the atomic density matrix, the 
photon correlation function and the fluorescence spectrum. The results were compared 
with the corresponding expressions for the case of a diffusive phase, which gives rise 
to the same Lorentzian laser profile. The stochastics of a diffusive phase is essentially 
different from the stochastics of a random-jump process, but it turned out that the 
observable properties of the fluorescence signal are indistinguishable. Even a perfect 
frequency resolution in the detection of the fluorescent photons does not discriminate 
between both driving fields. The atomic response to a Lorentz wave is a special case 
of its response to a laser field with a non-Gaussian diffusion phase. 

The structure of the formulae for the stochastic averages over the random jump 
process is very different and much more involved than the simple expressions for the 
diffusion process. The question should be raised whether this correspondence in the 
final results is merely a coincidence, or whether it could be expected. Both the random 
jump process and the independent-increment process are Markov processes, which 
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are determined by the transition rate W(4’14). For random jumps on ( -T,  T ]  with a 
uniform distribution, this rate equals A / ~ T ,  independent of 4’ and 4. For the diffusion 
process we have W(qb’14) = ~ ( 4 ’ -  4). If we choose this rate also independent of 
4’ - 4 (apart from the slight difficulty with its normalisation on (-CO, CO)) and propor- 
tional to A, then the stochastics of both processes are essentially identical. For w ( 7 )  
independent of 7, we find from (2.6) and (5.3) that A ‘  equals A indeed. 
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