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Abstract. We consider a vector-valued stochastic process, which is multiplicatively driven 
by the Markov jump process. We obtain a closed expression for the average of the vector 
process by solving the Burshtein equation for the marginal average. It is shown that the 
solution for t > I, requires knowledge of an initial correlation operator, due to the finite 
correlation time of the jump process. We derive the equation for the steady-state solution, 
which is applied to evaluate the stationary correlation functions. Then we discuss some 
specific limits of the jump process, which arise if we take the correlation time to be zero 
or infinite. For the special case L ( x )  = A+ XB we derive from the Burshtein equation a 
recurrence relation between the moments of the vector process. This relation is solved and 
it is shown how all initial moments at to determine the moments for f 2 I,. We apply the 
recurrence relation to solve the two-state and the three-state process more explicitly. It is 
pointed out that the occurring initial correlations cannot be neglected in general. 

1. Introduction 

The theory of multiplicative stochastic processes has a long history in physics, but the 
equations occurring can rarely be solved for the average. This is mainly due to the 
fact that the average of a product of stochastic quantities does not factorise in the 
product of the averages, although it can be argued that good approximations can be 
derived by assuming such factorisations (van Kampen 1976). This approach, which 
leads to Bourret's integral equation (Bourret 1962), can be justified if the driving 
stochastic process has a short correlation time. In the limit of a zero correlation time 
and a Gaussian Markov process (the phase-diff usion process) some averages factorise 
exactly and the solution for the average can be found (Fox 1972). An extension to 
non-Gaussian processes has recently been given by Arnoldus and Nienhuis (1983). 

We consider a vector a(t)  in some Hilbert space, which obeys the stochastic 
differential equation 

i d a / d t  = L ( x ( t ) ) a ,  

Here L(x(  t ) )  is a linear operator on this space, and L will depend instantaneously on 
the real-valued stochastic process x(t) .  The issue is always to solve (1.1) for the 
stochastic average (a( t ) ) .  An initial value a( to)  determines the stochastic solution of 
( l . l ) ,  which can formally be represented by the time-ordered exponential 
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with 8 the Dyson time-ordering operator. After expansion of the exponential, we can 
replace the time-ordered integrals by multiple integrals, which yields the equivalent 
representation 

W 

a( t )  = 1 + (-i), dt, Il: dt,-, . . . 1‘’ dt, L(x(t,)) . . . L(x( ?,)))a( to). ( n = l  10 

(1.3) 

Commonly the initial state a(to) of the process is assumed to be non-stochastic and 
prescribed. Then we only have to average the time-ordered exponential. This has been 
done for the Omstein-Uhlenbeck process (Dixit et a1 1980, Zoller et a1 1981, Yeh and 
Eberly 1981) for the N-state Markov jump process (Deng and Eberly 1984) and for 
the random-jump process (Brissaud and Frisch 1974, Shapiro and Loginov 1978). In 
many cases of practical interest a( to) is not known and depends on the past values of 
x(t). We can only replace a(to) by its average (a(to)) if the process x( t )  is delta- 
correlated, which would justify the factorisation. A stochastic initial value a( to) appears 
for instance in correlation functions of a quantum mechanical system, driven by an 
external stochastic process. A prime example would be the spectrum of the radiation, 
emitted by a two-state atom in a classical driving field (Arnoldus and Nienhuis 1986). 

In this paper we take x( t )  to be the random-jump process, which has a finite 
correlation time. This time is not necessarily small, and hence a factorisation of 
averages would not be exact. Furthermore we allow the initial value a( to) to depend 
on the past in a stochastic way. We obtain an exact expression for the stochastic 
average (a ( t ) )  in a form that can be explicitly evaluated in specific cases. To our 
knowledge, a multiplicative process (T( t ) ,  driven by a stochastic process with a finite 
correlation time, has never been solved without a factorisation assumption. Exact 
averages have only been obtained for delta-correlated processes, and for the opposite 
situation of an infinite correlation time. For this static case all averages reduce to 
trivial single-time averages (KuB 1984, Arnoldus and Nienhuis 1985). 

2. The random-jump process 

The process x( t )  is taken to be a stationary homogeneous Markov process. Its 
stochastics is then fully determined by the probability distribution P(x)  and the 
conditional probability PT(x2 I xl),  which has the significance of the probability density 
for the occurrence of x(  t + T) = x2, when x( t )  = x1 (Stratonovich 1963). The time- 
independent probability distribution P( x)  must obviously obey the identity I dx, Pr(x21x,)P(xl) = P(xz). (2.1) 

The time evolution of P, is governed by the Master equation (van Kampen 1981) 

( d / d T ) P T ( x 3 1 x l ) =  I dx2( w(x,> x2)Pr(x21x1)- W(X~,X,)PT(X~IX~)) (2.2) 

for T 3 0, where W(x’, x )  2 0 has the significance of the transition rate from the value 
x to the value x’. The initial condition for (2.2) reads 

If we multiply (2.2) by P(xl) ,  integrate over x1 and apply relation (2.1) we obtain 
PO(X*IXl)  = 6(x,-x,). (2.3) 

dx’ W(x, x’)P(x’) = P(x)  dx’ W(x’, x). (2.4) I I 
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This imposes a constraint on the transition rate W ( x ,  x ' ) ,  which is necessary in order 
to preserve the stationarity of x (  t ) .  

We now specialise the process by supposing that x (  t )  can perform jumps at random 
instants, in such a way that the probability for a transition x ' + x  is independent of 
the initial value x' .  This implies that W ( x ,  x ' )  is independent of x', and with (2.4) we 
then find 

W ( x ,  x ' )  = y P ( x )  (2.5) 

with .=I dx W ( x , x ' ) > O  

the jump rate, independent of the initial value x' before the jump. Equation ( 2 . 5 )  
indicates that the probability distribution of x (  t )  just after the jump is independent 
of the condition that a jump occurred. This picture is reminiscent of the strong-collision 
model for the velocity distribution of atoms in a gas (Rautian and Sobel'man 1967). 

With relation (2.5) the Master equation attains the form 

( d / d T ) p T ( x 2 1  = -y(pT(x21 - p ( x 2 ) )  (2.7) 

P,( x2 I x , )  = e-"'S ( x2 - x , )  + ( 1 - e P T )  P( x 2 )  (2.8) 

and with the initial condition (2.3) the solution is 

720 .  

This reveals that the transition rate y > 0 and the probability distribution P ( x )  fix the 
stochastics of x (  t) .  Notice that we have made no restrictive assumptions about P ( x ) .  
By allowing P ( x )  to contain a sum of S functions, we would in fact have a discrete 
set of possible values of x.  Hence our model, which is known as the Kubo-Anderson 
process (Kubo 1954, Anderson 1954), contains the random telegraph model as a special 
case (W6dkiewicz 1981). 

From the Markov property and (2.8), we derive the relation for the moments of x (  t )  

( X ( t f l ) k X ( t , - l )  . X(tl))=exP[-Y(tn - t , - l ) l ( X ( t , - l ) k + ~ X ( t f l - * )  * 9 * X ( t l ) >  

+ { I  -exp[-y(t, - t , - l ) I ~ ( ~ k > ( ~ ( t , - l ) .  . . x ( t , ) >  (2.9) 

for k = 0, 1,2, . . . and t ,  3 . . . 3 t l .  Starting from k = 1, this result determines the 
moments ( x ( t , )  . . . x ( t l ) )  recursively. Especially for n = 2 we obtain 

( X ( t 2 ) X ( f * ) ) - ( X ) 2  = exp[-y(t2- t l ) l ( ( x 2 ) - ( X ) 2 )  t 2 3  t l  (2.10) 

expressed in the variance ( x 2 )  - (x) ' .  We see that we can identify y - l  as the correlation 
time of the process, which equals the jump rate. It will turn out in 0 6 that (2.9) is 
particularly useful to study the limits of long and small correlation times. From (2.9) 
we observe that x ( t )  is not Gaussian in general, but in Q 6 we will show that x ( t )  has 
two Gaussian limits. 

3. The Burshtein equation and its solution 

The general stochastic solution of the multiplicative stochastic process U( t )  is given 
by (1.3). If we assume a non-stochastic initial value c+(to)  and take the average term 
by term, then only the n-time average ( L ( x (  r n ) )  . . . L ( x ( t , ) ) )  for t 3 t ,  3 . . . 3 t l  3 to 
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is required. With the Markov property of the n-fold probability distribution of x(t) 
and the expression (2.8) for P,(x,lx,) , we can formally write down the average. Then 
it appears that the resulting series can be summed again (Brissaud and Frisch 1971), 
which yields the average ( ~ ( 2 ) ) .  This result however does not provide the general 
solution, since the initial value a(to) might depend stochastically on the past. Then 
the averages should be taken as (L(x( t , ) )  . . . L(x( tl))u( to)) .  Due to the finite correla- 
tion time of the process x(t), the average u(to) does not factorise from 

An alternative approach to multiplicative processes starts from the Burshtein 
equation for the marginal average (WBdkiewicz et a1 1984, Eberly et a1 1984, Deng 
and Eberly 1984, Shore 1984). Introduce the vector 

(L(X(t")). * LMt,))). 

l(X0, t )  = (Nx( t )  - xo)a(tN. (3.1) 
It has the significance of P(xo) times the average of u(t )  under the condition that 
x( t )  = xo, which is called the marginal average. We now multiply the expansion (1.3) 
by 6(x(t)-xo) and formally take the average. Then the t dependence of x( t )  is 
transferred to a t dependence of the probability distribution as Py-,n(xlx,). If we 
differentiate the expansion term by term with respect to t, we can apply the Master 
equation (2.7) in the derivative of Pt-tn(x 1 x,,). If we sum the resulting series, we obtain 
the differential equation for the marginal average 

which combines the Master equation and the evolution equation (1 .1) .  This is the 
famous Burshtein equation (Burshtein 1965). Here L( xo) depends only parametrically 
on xo, which is a great simplification in comparison with the stochastic equation ( l . l ) ,  
where L(x( t ) )  depends dynamically on the process x(  t ) .  

If we can solve (3.2) for {(xo, t), then (a( t ) )  follows from 

(a(r)> = l(X0, t )  dxo (3.3) I 

I : 
as can be seen from (3.1). The solution of (3.2) will be hard to obtain in general, and 
depends on the choice of P(x). With (3.3) however, we notice that it is sufficient to 
solve (3.2) for 1 I(xo, t )  dx,, rather than for 5(x,,, t )  itself. This is easily accomplished 
with a Laplace transform. If we define 

[bo, w )  = exp[io(t - to)lt;(xo, t )  dt (3.4) 

then the Burshtein equation becomes 

and integrating this equation over xo yields 
c 

1 
[ l -  yG(o+iy)](c?(o))= dxo 5b0, to) .  J w + i y - L( xo) 

Here we have introduced the static resolvent 
P 

(3.6) 

1 
G(w) = J dx P ( x )  (3.7) 

0 - L(x) 
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which is a single-time average. Now we can insert definition (3.1) for J(xo,  to) in (3.6) 
and perform the integration. We then obtain 

(3.8) 
1 

( G ( w ) )  = 

for the Laplace transform of (U( t ) ) .  This is the general solution for the average of the 
multiplicative process a( t ) .  The factor in brackets in (3.8) contains the initial correla- 
tions at to. It is not a simple single-time average, because a( to)  depends stochastically 
on its history. If a( to) would happen to be non-stochastic, then (3.8) would reduce to 

which is the solution of Brissaud and Frisch (1974). Only in this case is ( 6 ( w ) ) ,  and 
therefore also (U( t ) ) ,  completely determined by the initial state a( to). In the appendix 
we cast the solution (3.8) in a different form, which will reveal more clearly the 
significance of the initial correlations. 

4. Stationary state 

;?.le solution a( t )  from (1.2) will exhibit persisting fluctuations, even in the limit t + 00, 

because x( t )  keeps on jumping. The average (U( t ) )  however might reach a stationary 
state, as a result of an effective damping, caused by the fluctuations in x ( t ) .  The 
general solution (3.8) takes the form of the integral equation 

( a ( r ) ) - y  [,Idt’exp[-y(t-t’)] d x P ( x )  exp[-iL(x)(t-t’)](a(t’)) I 
= exp[-y(t - to)I(exp[-iL(x(to))(t - t o ) 1 4 t o ) )  (4.1) 

in the time domain. In the limit t >> to the right-hand side of (4.1) vanishes, because 
of the first exponential. Hence in this long-time limit, the dependence on the initial 
correlations disappears. 

Let us now assume that (a (? ) )  reaches a steady state, which will be denoted by 

5 = lim(a( t-OC t ) ) .  (4.2) 

This 5 is not necessarily unique. If (a( t ) )  attains a stationary value in the limit t >> to, 
we can take (a(  r ’ ) )  in (4.1) outside the integral as 5, because the factor exp[ - y(  t - t ‘ ) ]  
makes the contribution from t ’ c  t negligible. Then we can perform the t’ integration, 
which yields the equation for the steady state 

[ 1 - yG(iy)]e  = 0. (4.3) 
If the operator 1 - yG(iy) has more than one eigenvalue zero, the steady state is not 
unique, and if it has no eigenvalue zero, the steady state is 5 = 0 .  In this derivation 
we obviously supposed that the static evolution operator exp[-iL(x)( t - to)] has no 
exponentially increasing components. 

In the Laplace domain the steady state follows from 

5=  lim -iw(G(w)). 
U-. lO+ 

(4.4) 
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Then we can multiply (3 .8)  by -io and take the limit w +io+. We notice that 

(4.5) 
1 lim -iw = O  

W + I O +  w + i y - L ( x (  to)) 

and that G ( w  + i  y )  exists for w + 0. This gives again (4 .3) .  

If we introduce the steady-state marginal average as 
In this fashion it is easy to obtain the stationary solution of the Burshtein equation. 

then it follows directly from (3.5) that [ ( x , )  is related to 6 as 

(4.6) 

After solving (4.3) for 5, this equation determines [(x,). Conversely, if we integrate 
(4.7) over x,,, we again find (4.3). 

5. Correlation functions 

Suppose that the system is prepared at to in a non-stochastic state a( fO) .  Then the 
solution for (a( t ) )  with t 3 to is given by the Laplace inverse of (3.9) and the initial 
correlations do not enter. On the other hand, in the case that (1.1) is a regression 
equation for a correlation function, the initial value a( to) corresponds to the equal-time 
correlation. Consider for example the quantum correlation ( F (  to)G( t ) )  between the 
two Heisenberg operators F and G. Transformation of this expression to the Schrodin- 
ger picture yields 

(F( to)G(  t ) >  = Tr GWt, to)( p ( t o ) F )  (5.1) 

with U (  t, to) the evolution operator in Liouville space for the density matrix p(  t ) .  This 
can be written as Tr Ga( t )  if we define a( t )  as 

d t )  = V(t ,  t o ) ( p ( t o ) F ) .  ( 5 . 2 )  

Hence the time evolution of a(t)  also obeys the Liouville equation, which is assumed 
to be of the multiplicative form (1.1). This turns the two-time correlation (5.1) into a 
stochastic quantity. 

The initial value a(to), which determines the equal-time correlation, can be 
written as 

4 t o )  = p ( t o )  F = Rp ( t o )  (5.3) 

where the action of the Liouville operator R is defined as the multiplication with F. 
This p( to )  is the density matrix of the quantum system at to, and hence its evolution 
from the initial state p ( 0 )  with O <  to is also governed by (1.1). We will only consider 
stationary correlation functions, which requires to >> 0. Then, even if the initial state 
p(0) is non-stochastic, the initial value a( to)  = Rp( to)  for the a( t )  process will stochasti- 
cally depend on the evolution in [0 ,  to]. 
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Although a( t )  and p (  t )  often obey the same equation, it is sometimes necessary 
to allow the equation for p ( t )  to have a slightly different form (Zoller and Ehlotzky 
1977, Arnoldus and Nienhuis 1983). Therefore we assume that p ( t )  is determined by 

t s t o  dP i-= L ' ( x ( t ) ) p  
d t  (5.4) 

where L' is not necessarily equal to L. However, the driving process ~ ( t )  is the same 
as in (1.1) for the evolution of U(?) for t Z  to. 

We suppose that at time to, p ( t o )  has been driven by (5.4) long enough, so that 
( p (  to) has reached its steady-state p, as discussed in the previous section. This p is the 
solution of 

and the corresponding marginal average can be found from (4.7) with the substitutions 
L +  L' and e+ p. For the evaluation of the correlation function ( G ( w ) ) ,  we return to 
(3.6). The initial marginal average 5(xo, t o )  of a(to) can be written as 

(5.6) 

because of (5.3). In this expression we cannot replace p ( t o )  by p, but the marginal 
average ( t 3 ( x ( t o )  - x o ) p (  to))  has reached a steady state, which is related to p by (4.7) 
with L+ L' and 6 + p. Hence we find 

5 ( x o ,  t o )  = R(S(x(t0)  - x o ) d t o ) )  

in the stationary state. If we substitute (5.7) into (3.6) we obtain 

i y  ) p .  (5.8) 
1 

R 
1-yG(w+iy)  w + i y - L ( x )  i y - L'( x )  (G(6J) )  = 

This result determines explicitly the stochastic average of a correlation function, 
including the initial correlations. Since this expression cannot be written as an evolution 
operator acting on the average initial state Rp, a factorisation assumption cannot be 
exact. Only for small correlation times y- ' ,  in comparison with the eigenvalues of 
L'(x)- ' ,  we have 

lim iy = 1  
Y- iy - L'(x)  

which turns equation (5.8) into 

1 
1 - yG( w + i y ) 

G ( w  + i y)  Rp ( G ( w > >  = 

(5.9) 

(5.10) 

with Rp = (a(to)>. Comparison with (3.9) shows that only in the limit y- '+  0, can this 
factorisation be justified. 

6. Limits of small and long correlation time 

The magnitude of the correlation time y- l  has a great impact on the structure of the 
solutions. Let us first consider the limit of very frequent jumps, so y-' + 0. Then the 
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conditional probability (2.8) reduces to 

P A X 2 1  X I )  = P ( x 2 )  (6.1) 
for every T 2 0, and hence this conditional probability becomes independent of the 
condition. Equation (6.1) holds generally only for YT+ 00, which illustrates that for 
long delays T, the memory of the process to x (  t l )  = x 1  vanishes. Now (6.1) holds for 
every T 3 0, which implies that the process has no memory. If we take y- '+  0 in the 
recurrence relation (2.9) for the moments of x (  t )  we find 

( x (  t , )  . . . x (  t l ) )  = (x)". (6.2) 
This reveals clearly that a high jump rate y effectively tums x (  t )  into ( x ) .  Therefore, 
also the multiplicative process o(t )  will only respond to ( x ) .  This can also be found 
explicitly from the expansion (1.3). If we apply (6.1) and average the series (1.3), we 
can evaluate the multiple integrals. If we differentiate the result, we obtain 

i (d/dt)(a( t ) )= L(a(t))  (6.3) 

L= L ( x ) P ( x )  dx (6.4) 

with 

I 
the average of L ( x ) .  The solution of (6.3) for t 2  to is determined by (a(to)), which 
proves in general the factorisation in the limit y-' + 0. In the appendix we digress a 
little more on this limit. 

Let us now consider the opposite case of an infinite correlation time y-' .  With 
(2.5) we then find 

W ( x ,  x ' )  = 0. (6.5) 
In this limit y + 0 the transition rate vanishes, which means that for every realisation 
of the process x (  t ) ,  the value of x (  t )  is constant. This is the static limit. The conditional 
probability (2.8) becomes 

P * ( x z l x , ) =  S ( X z - X , )  (6.6) 
for every T. This shows that o( t )  depends only parametrically on x, and that averaging 
reduces to single-time averaging with P ( x ) .  The moments of x ( t )  become 

( x ( t n )  . x ( t l ) > = ( x " )  (6.7) 
and the average of o(t )  can be written as 

(U(?))= d x P ( x ) o ( x ,  t )  (6.8) I 
where the non-stochastic a ( x ,  t )  is the solution of 

i(d/dt)u(x, t )  = L ( x ) a ( x ,  t ) .  (6.9) 
The initial state a ( x ,  to) depends also on x, which implies that a factorisation in this 
limit ?-'+a is certainly not correct. 

The probability distribution P ( x )  is still arbitrary. If we take P ( x )  as a Gaussian 
in the limit y + 0, then the process x (  t )  is also Gaussian. The only stationary Gaussian 
Markov process is the Ornstein-Uhlenbeck process (Wax 1954), so this limit is the 
static limit of the Omstein-Uhlenbeck process (KuS 1984, Swain 1984). 
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Another interesting limit arises if we take again y-l + 0, but allow the fluctuations 

A = b2)/ Y (6.10) 

remains finite. Furthermore we take P ( x )  symmetric, e.g. P (  - x )  = P ( x ) ,  which implies 
( x )  = 0. With the limit 

lim yexp[-y(t,-t,)]= 6 ( t Z - t l - ~ + ) = 2 6 ( r 2 - t l )  t2k t l  (6.11) 

in x ( t )  to become very large, in such a way that the parameter 

y-03 

the moments of x ( t )  become 

( x ( t , ) .  . . x ( t l ) ) = ( 2 A ) " S ( t , - t , - , ) .  . . 6 ( t , - t , ) i 3 ( t 2 - t l )  (6.12) 

for n even and t ,  k . . . 2 t l ,  whereas the odd moments vanish. 
This process x ( t )  is also Gaussian and identical to the phase-diffusion process or 

Gaussian white noise (Fox 1972). It might seem that the moments (6.12) do not have 
the Gaussian property, but in the summation over the different permutations of time 
arguments on the right-hand side of (6.12), as it appears in the general form for the 
moments of a Gaussian process, only one term contributes for a specific time ordering, 
due to the exact delta correlations. The process x ( t )  is also a Markov process. It is 
the Ornstein-Uhlenbeck process with zero correlation time and infinite variance. 

7. The moment expansion 

An important specific case arises if we take L ( x ( t ) )  as the linear form 

L ( x ( t ) ) = A + x ( t ) B  (7.1) 

with A and B non-commuting operators. This equation describes, for instance, the 
state of an atom in a multimode laser field, the fluorescence spectrum and the photon 
correlations. In this section we will elaborate the notion of initial correlations, and 
take advantage of the specific form of L ( x (  t ) ) .  

We introduce the moments of U(?) as 

n k (  t )  = (x( t)ka( t ) )  

no( t )  = (d t ) ) .  

k = 0,  1,2,  . . . (7.2) 

and in particular we have 

(7.3) 

The moments n k ( t )  are determined by the marginal average J ( x o ,  t )  according to 

W t )  = X o k J ( X 0 ,  t )  dxo (7.4) I 
as can be seen from (3.1). For k = 0 this reduces to (3.3). If we multiply the Burshtein 
equation (3.2) with xk,  insert (7.1) for L ( x (  t ) )  and integrate over xo, we find an equation 
for the moments. We obtain 

(7.5) 

which is a recurrence relation between the moments with different k values. This 
expression relates n k (  t )  to &+,( t ) ,  no( t )  and the static moments ( x k )  of ~ ( x ) .  
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Equation (7.5) for the moments of a( t )  is an infinite set of coupled first-order 
differential equations, which has to be solved with a given set of initial moments n k (  to). 
The solution of (7.5) relates the set of moments n k (  t) for t 3 to to the initial set Ilk( to). 
This shows that especially the state of the system no( t )  = (a( t)) for t 3 to will depend 
on all initial moments n k (  to), which constitute the initial correlations of a( to). 

With the differential equation (1.1) and the specific form (7.1) for L, we can cast 
(7.5) in the form 

i-(x(t)ka(t))-  d x(t)ki--a(t) d ,  = iy((x(t)k)(u(t))-(x(t)ka(t))) (7 .6)  
dt  ( dt  

which is the differentiation formula of Shapiro and Loginov (1978).  

by a Laplace transform. If we define 
The coupled differential equations (7.5) can be transformed to algebraic equations 

(7 .7)  

then (7.5) is equivalent to 

We can solve (7.8) recursively in terms of the moments of the static resolvent 

1 ) = w - ~ - ~ ~ '  
dx P(x)xk 

u-A-xB 

This yields 

(7.9) 

(7.10) 

in terms of the operators Gk(w+iy)  and the initial moments n k ( t o ) ,  Equation (7.10) 
expresses f i k ( 6 . ) )  in f i o ( w ) ,  and if we take k = O  in (7.10),  we find for n o ( w )  the explicit 
result 

f i o ( w )  = 1 1 1 ) J n j ( t o )  (7.11) 
1 - yGo(w + i Y )  w - A+iy  

which is the Laplace transform of (a( t ) ) .  We notice that this solution involves all 
initial moments nj( to). This shows again that for the random-jump process the average 
(u( t ) )  is not determined by (a(to)) alone in general, as would be the case if an initial 
factorisation was justified. 

If we recall that the initial correlations are defined as n k ( t 0 )  =(x(fo)ka(fO)), then 
we can write the solution (7.11) in a more condensed form. We obtain 

i 
w -A + iy - x( to) B 

f i o ( w )  = 

which recovers the result (3.8).  Similarly (7.10) reduces to 

(7.12) 

(7.13) 
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If we assume P ( x )  to be symmetric, we can obtain an alternative expression for 
Gk(fo). With some effort we then find for k even 

k = 0 , 2 , 4  , . . .  (7.14) 1 
Gk(0) = ( X k  o-A+ix2B[i/(w-A)]B 

and the resolvents for k odd then follow from 

(7.15) 

It will turn out that these relations are especially useful for the random telegraph process. 

n k ( t 0 )  = (Xk)a(rO)* (7.16) 

After substitution in the series expansion (7.11), the series can be resummed and we 
recover the result (3.9). In general however, the initial state will be stochastic, as for 
instance for a correlation function. The steady-state correlation function now simply 
follows from to+ 03 in the initial moments. The long-time solution 

If the initial state a( to) is non-stochastic, then the initial moments reduce to 

(7.17) 

is directly found from (7.10). We have 
n k  = yGk(iY)no (7.18) 

which expresses n k  in no, and reduces to (4.3) for k = 0. Substitution of nj for rIj( to) 
in (7.1 1) then yields the stationary correlation function. 

8. The two-state process 

The most elementary random-jump process is the random telegraph signal. In this 
special case the process x( t )  can only assume the values *a ,  with equal probability 
P ( * a )  =$. The simplifications are due to the property 

x( t ) 2  = a 2  (8.1) 

n 2 k (  t )  = a2knO( t )  n2k+l(t) = a2knl(t) k = 0 , 1 , 2  , . . . .  (8.2) 

for every f, which implies for the moments (7.2) 

Hence all moments are determined by the initial correlations no(t0) and nl(t0). We 
can substitute (8.2) in the general solution (7.11) and sum the two remaining series, 
but the result is rather cumbersome. It is more convenient to go back to the set of 
equations (7.5) for the moments. Because of (8.2) this infinite set truncates after the 
second equation, and we are left with only two remaining equations: 

i(d/dt)n,( t )  = Ano( t )  + Bn,(  t )  (8.3) 

i(d/df)H1(f) = (A- iy )n , ( t )+  a 2 B n 0 ( r ) .  (8.4) 
This set is easily solved with a Laplace transform, with the result 

1 i 
to)  - iB ( n (  w-A+iy  w - A+ia2B[i/(w -A +iy)]B 

A o ( w )  = (8.5) 
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This general solution is expressed in the two initial correlations no( to) and n,( to). In 
a factorisation approximation the second term in large brackets in (8.5) is neglected 
(W6dkiewicz et a1 1984). We wish to emphasise however that this term is not necessarily 
small. 

The equation for the steady-state no follows immediately from (8.5). We find 

(8 .7)  

which is the explicit form of (4.3) for the two-level process. The solution for n, could 
be found from the general expression (7.18), but from (8.4) we obtain directly 

Equation (8.3) relates no and n, according to 

which is consistent with (8.7) and (8.8). These steady-state solutions for the moments 
can again serve as the initial correlations for the correlation functions, just as in 0 5. 

It was pointed out in 0 6 that the random-jump process reduces to Gaussian white 
noise if the variance and y become infinite, but A = (x2>/ y remains finite. We can take 
this limit easily in the explicit solution (8.5) for the random telegraph. This gives 

n, = ia2[i/( A - i y ) ] B n o .  (8.8) 

Bfr, = -A& (8.9) 

(8.10) 

which is the familiar result (Fox 1972). We notice that the initial correlation nl(to) 
disappears indeed in this limit. 

We solved the random telegraph problem here as an example of the general theory 
of initial correlations. In fact the solution (8.5), including the initial correlations, can 
be found more directly for this specific process. To this end we first notice that the 
relation (2.9) for the moments reduces to 
(x( t , )  . . . x( t l ) )  = a n  exp[- y (  t ,  - t,-l +. . . + ts- t 3+  f2 -  t , ) ]  n = 2,4,6, . . . (8.11) 

for t ,  3 .  . . z t , ,  as a consequence of x( t ) 2  = a’. The moments for n = 1,3,5, . . . , are 
zero. Equation (8.11) implies the relations 

(x( t +  .)a( t ) )  = e-Y+(x( t)a( t ) )  

( x ( t + ~ ) x ( t ) u ( t ) ) =  a2 e-”(a(t)> 
(8.12) 

for T 3 0, if a( t )  is a solution of 

i d a / d t  = (A+x( t )B)a .  (8.13) 
This differential equation is identical to 
i (d/dt)a(  t)  = Am( t )  + B exp[-iA( t - to)]x( t)a( to) 

-iB 1,: exp[-iA(t-t’)]Bx(t)x(t’)a(t’) dt’. (8.14) 

If we take the average term by term, apply (8.12) and take the Laplace transform, we 
obtain 

1 1 
( w  - A)(G(w)) = i(a( to))+ B (x( ro)u( to))  - i a2B B ( & ( w ) )  (8.15) w-A+iy  o - A + i y  
which is identical to the solution (8.5). It is remarkable that this solution has not been 
found before. 
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9. The three-state process 

The method of the previous section is easily extended to the situation where x (  t )  has 
the three possible values -a,  0, a. The probabilities are chosen as P ( - a )  = P ( a ) ,  
P ( 0 )  = 1 - 2 P ( a )  and the variance of x ( t )  becomes 

(x2) = 2 a 2 p ( a ) .  (9.1) 

If we choose P ( 0 )  = 0, this three-level process reduces to the random telegraph signal 
from 0 8. We now have the obvious relation 

x(t13 = a2x(  t )  

for every t ,  which implies for the third moment 

(9.2) 

If we then apply (9.3) in the set of recurrence relations (7.5), we find again that the 
set truncates. We obtain the closed set of three coupled differential equations 

i(d/df)U0( t )  = AIIO( t )  + En,( t )  

i(d/dt)II,(t) = (A- iy)II l ( t )+  BII2(l) (9.4) 

i(d/dt)I12(t) = ( A - i y ) I 1 2 ( t ) + a 2 E ~ , ( t ) + i y ( x 2 ) I I o ( t )  

for the moments no( t ) ,  II,( t )  and 112( t ) .  It is straightforward to solve this set with a 
Laplace transform, just as in the previous section. The general solution contains the 
three arbitrary initial correlations no( to), U,( to) and 112( to), which determine the 
moments for 12 lo. 

10. Conclusions 

The multiplicative process a( t )  is assumed to obey the stochastic differential equation 
i d a / d t  = L ( x (  ?))a  with x (  t )  the random-jump process. We apply the Burshtein 
equation for the marginal averages to solve this equation for the stochastic average 
( ~ ( t ) ) .  We take into account the possibility that the initial value a(to) is stochastic. 
The finite correlation time of the process x ( t )  then implies that ( ( ~ ( f ) )  is not only 
determined by the average initial state (a( to)), but that an initial correlation operator 
for a( to) is required. In the case that L ( x (  t ) )  is linear in x (  t ) ,  it is sufficient to prescribe 
the initial moments I Ik (  to), as is demonstrated explicitly for the bivalued process, the 
random telegraph. Then the solution is determined by IIo(to) and II,(to), and it is 
pointed out how this can be generalised to the three-state jump process. 

The steady-state solution (a( t = 0;))) is independent of the initial correlations, and 
is fully determined by L ( x (  t ) )  and the stochastics of x (  t ) .  We derived the equation 
for this steady-state value. Subsequently it was shown that the stationary (quantum) 
correlation function of two observables can be expressed as a single-time average times 
this steady state. Due to the finite correlation time of the x (  t )  process, these correlation 
functions do not factorise in the average of the regression operator times the average 
equal-time correlation, as is commonly assumed as an approximation. 
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Appendix 

In this paper we presented an exact and operational theory of multiplicative stochastic 
processes with random jumps, which can be applied directly in practical cases. In this 
appendix we discuss in more detail the effects of the finite correlation time y-l and 
the structure of the solution. 

The general result (3.8) for (&(o)) can be transformed to the time domain, which 
yields the integral equation (4.1). If we differentiate (4.1) with respect to t, we obtain 

i-(a(?))= y dt'exp[-y(t -?')I dxP(x)L(x)  e x p [ - i L ( x ) ( t - t ' ) ] ( a ( t ' ) )  

(A1 1 
I d 

dt  I,: 
+exp[-y(t - to)l(L(x(to)) exp[-iL(x(to))(t - t o ) 1 4 t o ) )  

and a Laplace transform of this equation gives 

where we introduced the operator 

iY 
o - L(x) + i y' 

The result (A2) is equivalent to (3.8). We notice however that (A2) involves a different 
initial correlation operator, in comparison with (3.8), and that the average initial state 
(a( to))  enters the solution. 

Let us now consider the limit of a small correlation time y-' .  We obviously have 
L 

lim La,(w) = dxP(x)L(x)  = 
y-I-0 J 

1 

w-L(x(to))+iy 

and (A2) reduces to 

The Laplace inverse is the sample exponential 

(a( t ) )=exp[- i ( t -  to)L](a(to)). (A71 
The first effect of the finite correlation time is that the t in (A6) turns into the 
frequency-dependent operator La,( U ) .  This introduces a memory in the time evolution 
for the average, but (a ( t ) )  is still determined by (a( to))  only. The second effect of 
y-' # 0 is the appearance of the initial correlation operator in (A2). This quantity 
involves the stochastic a(to), which also depends on the history of the process, and 
hence knowledge of (U( to))  only is not sufficient any more. These two distinct features 
are clearly separated in (A2). We notice that the structure of (A2) is very similar to 
the expression for a density operator of an atom in a perturber bath (Nienhuis 1982). 
There the La,(@) is the binary-collision operator. Its frequency dependence and the 
appearance of the initial correlations are then a consequence of the finite collision 
time. In the more familiar impact limit of a collision, the collision time approaches 
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zero and La,(@) reduces to an effective o-independent collision operator and the initial 
correlations vanish. 

From (A2) we can also derive an equation for the steady state 6. We find simply 

La,(0)6 = 0 (A81 
which is identical to (4.3) because of the identity 

L,,(O) = - i y ( l -  yG(iy)). 

Equation (A8) reveals clearly that the average steady state 6 is determined by the 
operator L,,(w),  which accounts for the evolution of the average state ( ( ~ ( t ) ) .  This 
operator L,,(O) is however not equal to the average of L ( x ( t ) ) ,  which is L. 
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