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Abstract. We give a theoretical description of the spectrally resolved intensity correlations 
of an electromagnetic field, in analogy with the definition of the physical time-dependent 
spectrum. The results are applied to evaluate the time correlations between the three lines 
in the spectrum of resonance fluorescence of a two-level atom. We include the possibility 
of a finite bandwidth of the incident radiation, and we allow for collisions with perturber 
atoms. Photons in the central Rayleigh line are emitted in a fully random fashion, without 
any correlation with previous or subsequent emissions. Two photons from the same 
sideband display antibunching in time, whereas two photons from opposite sidebands tend 
to bunch with a strong asymmetry in time. The effect of collisions and of a finite bandwidth 
is to diminish this asymmetry. 

1. Introduction 

Intensity correlations in the fluorescent emission of atoms display the celebrated 
phenomenon of antibunching in time (Carmichael and Walls 1976, Kimble and Mandel 
1976, W6dkiewicz 1980). This feature is particularly interesting, since it represents 
an essentially quantum-mechanical property of the fluorescence field, which cannot 
be reproduced by any classical field (Paul 1982). 

It is well known that for large detunings from resonance, or for large Rabi 
frequencies, the spectrum of resonance fluorescence of a two-level atom contains three 
separate lines, i.e. the central Rayleigh component at the incident frequency, and two 
sidebands, which are usually termed the three-photon line and the fluorescence line 
(Mollow 1969, Carlsten et a1 1977). The question arises in which way the overall 
intensity correlation of the integrated emission is distributed over the various combina- 
tions of lines. This question has been discussed by Apanasevich and Kilin (1979) and 
by Cohen-Tannoudji and Reynaud (1979). These authors consider the case of a 
monochromatic driving field incident on a free two-level atom. It was found that 
photon emissions in the central line of the three-line spectrum are not correlated to 
previous or later emissions. Photons from a single sideband display antibunching, 
whereas emissions from opposite sidebands are bunched with a considerable asymmetry 
in their time ordering. These results are in line with recent experimental observations 
by Aspect et a1 (1980), who found that emissions in the three-photon line tend to 
precede emissions in the fluorescence line. 

In the present paper we give a general formal expression for the two-time intensity 
correlation function with spectral resolution. This expression takes the form of a 
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double convolution of a quasi-distribution, which is determined by field properties 
only, and a smoothing function that contains the properties of the frequency filters. 
We apply this result to the derivation of the spectrally resolved intensity correlation 
function of resonance fluorescence. We allow for collisions with a perturber gas, and 
for phase fluctuations of the incident field, which result in a finite bandwidth. In the 
special case of the three-line fluorescence spectrum of a two-level atom we find that 
increasing the incident intensity can either increase or decrease the correlation time 
between successive emissions, depending on whether the bandwidth and the collisional 
width are larger or smaller than the natural width. Finally, collisions and phase 
fluctuations decrease the asymmetry in the time ordering of photons from opposite 
sidebands. 

2. Time correlation between frequency-resolved photons 

The number of detected photons per unit time by a photomultiplier is proportional 
to the local energy density of the electromagnetic field 2 4 E ( - ) ( r ,  t )  E(+)(r ,  t ) ) ,  with 
E ( + )  the positive-frequency (annihilation) part of the electric-field component. If we 
wish to count only photons within a small frequency range around a central frequency 
oO, we have to filter the field by passing it through a spectrometer with wo as its setting 
frequency. The annihilation part of the resulting filtered field is related to the original 
field by 

E“’( t )  = lom d?- exp(-h,?-)f( ?-)E(”( t - T )  

(Renaud et a1 1977, Eberly and W6dkiewicz 1977) with f(t) a filter function, which 
we shall suppose to be real. The component of E ( + )  in the direction of the detected 
polarisation is denoted as E(+),  and we suppress the r dependence. The number of 
detected photons from the filtered field per unit time is now represented as 

I&, WO) = y ( E ( - ) ( t ) B ‘ + ’ ( t ) )  (2.2) 

with y a proportionality constant. This expression (2.2) is termed the physical spectrum 
by Eberly and W6dkiewicz (1977). It has been demonstrated (Nienhuis 1983) that 
Tl(t ,  oo) is directly related to the definition of Page (1952) and Lampard (1954) of a 
time-dependent spectrum 

I l ( t ,  w ) = ( y / v )  Re J dTexp(io?-)(E(-)(t-?-)E(+)(t)). 
0 

(2.3) 

The physical spectrum Ti is a convolution over time and frequency of the quasi-spectrum 
(2.3) with a smoothing function 

~ ( o ,  T )  = 2 Re dr ‘  exp(-ioT’)f( ~ ) f (  T + 7’) lom (2.4) 

according to the simple relation 

T l ( t , w O ) = j  d o  ~ o ~ d ? - ~ ( o , T ) ~ ~ ( ~ - ~ , o ~ - o ) .  (2.5) 

The smoothing function (2.4) is completely determined by the properties of the 
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spectrometer, whereas the quasi-spectrum (2.3) depends only on the field. The function 
s(w, 7) has a frequency width and a time width which are related by the uncertainty 
relation. 

In the present paper we discuss the two-time probability density of spectrally 
resolved photons detected from a radiation field. From the first part of this section it 
will be obvious that spectral resolution of the detected photons is accounted for if we 
simply replace the incident field E‘+’(t) by the filtered field I?(+)(t) .  On the other 
hand, for a measurement of a photon with a frequency around w1 at time t,, and a 
photon with a frequency around w 2  at time t 2 ,  one has to use two spectrometers and 
two multipliers. The first spectrometer modifies the incident field E‘+’(t) into the 
filtered field E r ) ( t ) ,  and the second one gives the filtered field I?p)(t) .  These two 
filtered fields are given by equation (2.1) when the setting frequency w0 is replaced 
by the frequencies w 1  and w 2 ,  respectively. For convenience we assume that the two 
field functions f pertaining to the two spectrometers are equal, but this is by no means 
essential. The two-time probability density for counting a photon at time tl with a 
frequency within the passband width around the setting frequency w , ,  and a second 
photon at time t2 with a frequency around w 2  is then given by the intensity correlation 
function (Glauber 1965, Kelley and Kleiner 1964) 

12(t1, w , ;  t 2 ,  w2)  = ~ 2 ( ~ ~ - ) ( f 1 ) I ? ~ - ) ( t 2 ) ~ ~ ) ( t 2 ) ~ ~ ) ( t 1 ) )  (2.6) 

for t 2 2  t l .  One notices that f 2  is a non-negative function of two times and two 
frequencies, as it should be. A two-photon counting experiment with spectral resolution 
was recently performed for resonance fluorescence by Aspect et al (1980). 

We substitute equation (2.1) for different times t = f,, t2 and different setting 
frequencies w0 = wl, w2 into (2.6), and we use the inverse of equation (2.4) for 7’ 2 0 

f ( r ) f ( ~ + ~ ‘ )  =- dw exp(iw’)s(w, 7). (2.7) 27r ‘I 
We find that r2 can be expressed as a double convolution of a quasi-distribution 
function 12, in analogy with (2.5) 

T2ct1, w1; t 2 ,  w 2 )  

where the quasi-distribution function 

m m 

= 4 Re I d7; d~$[exp(io,  7; + iw27;) 
277 0 0 

depends only on the incident field. A large passband width of the spectrometer, 
corresponding to a large spectral width of the smoothing functions, gives rise to a 
small range of values of T~ and 72 contributing to (2.8), and likewise the integration 
over w ;  and w ;  in (2.8) restricts the range of values of 7; and 7; contributing to f 2 .  
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3. Fluorescence radiation 

In order to fix the notation, we now give a brief summary of the theory of fluorescence 
radiation from a two-level atom in a non-monochromatic radiation field. We shall 
demonstrate that the evaluation of the two-time quasi-distribution function I;! can be 
performed along the same lines that lead to the fluorescence spectrum. 

We include a finite bandwidth A of the incident radiation as resulting from stochastic 
fluctuations in the phase $ ( t )  of the electric field 

E ( t )  = E o  R e  cL exp[-i(w,t+ $( t ) ) ] .  (3.1) 

The atomic dipole p interacts with the external field, giving rise to a coupling strength 
hR = Eo(elp eLlg), where le) and lg)  are the atomic excited state and ground state. 
In the rotating-wave approximation the interaction is given by 

Har( t )  = -;hod exp[-i( wLt + $( t ) ) ]  +Hermitian conjugate (3.2) 

where d=le)(gl  is the raising part of the dipole operator. Atomic decay due to 
spontaneous emission is taken into account in terms of the effective relaxation operator 
r, acting on a density matrix according to the equality 

(3.3) 
where A is the Einstein coefficient and Pe = dd'= le>(el is the projector on the excited 
state. The energy separation between the atomic states is hwo, and the evolution of 
the density matrix is determined by the stochastic differential equation 

T p  = i A ( P e p  + pPe - 2d'pd) 

d 
dt  

ih - p (  t )  = [hw,P, + Ha*( t ) ,  p (  t ) ]  - ihrp(  t ) .  (3.4) 

The rapid oscillation of the Hamiltonian with the optical frequency wL of the driving 
field can be transformed away by applying the unitary transformation 

d t )  = exp[i(w,t+ rL(t))KIp(t) (3.5) 

KP = [ P e t  PI. (3.6) 

with 

Then cr obeys the Liouville equation 

d 
dt  

i-cr(t)=(Ld-ir-rlr(t)K)cr(t) (3.7) 

with hLd the commutator with the dressed-atom Hamiltonian 

H d  = -&[A( P, - P,) +a( d + d t ) ]  (3.8) 

in terms of the Rabi frequency R and the detuning from resonance A = wL- wo. If we 
treat $( t )  as a process with random independent increments, the stochastic average 
of (3.7) has the solution (Arnoldus and Nienhuis 1983 and references therein) 

((a(t)))  = Zo(t- t O ) ( ( d t O ) ) )  = exp[-i(t- ~ O K O I ( ( ~ ~ O ) ) )  (3.9) 

for t >  to, with 

Lo = Ld - iT - i WO (3.10) 
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and WO an effective relaxation operator accounting for the finite bandwidth, given by 

Woa= Al(PgaPe+PeaPg). (3.11) 

The stationary state 6 of the atom is determined by the eigenvalue equation 

Lo6 = 0. (3.12) 

The spectral distribution of the fluorescence radiation is determined by the Fourier 
transform of the dipole correlation function. This follows from the fact that the 
electric-field component of the scattered radiation is proportional to the atomic 
lowering operator in the Heisenberg picture (Kimble and Mandel 1976) 

(3.13) 

and therefore field correlation functions are proportional to the dipole correlation 
functions 

Cn(ti , .  . . , t;;  t,, . . . , tl) = ( d ( t ; )  . . . d ( t ; ) d t ( t n ) .  . .dt(tl)), (3.14) 

E(+)( t )  a d+(  t )  

The quasi-spectrum (2.3) of the fluorescence is now 

Il ( t, w ) = A Re jOm d7 exp( iw7) C1 ( t - 7; t ) (3.15) 

which is still a stochastic function of time. The explicit time dependence disappears 
after stochastic averaging. The evaluation of Cl is easily carried out after applying 
the transformation (3.5) (Arnoldus and Nienhuis 1983), with the result for 7 ~ 0  

C1 ( t  - 7, t )  = exp[-i( wL7 + +( t )  - +( t - 7))]Tr dt  Y ( t ,  t - T)( a( t - 7 ) d )  (3.16) 

where Y(t ,  to) is the propagator of a according to the relation 

lr 

4 t )  = Y(t ,  to)a(to). (3.17) 
Hence Y obeys the same Liouville equation (3.7) as a. As shown before, stochastic 
averaging of (3.16) gives the result (Arnoldus and Nienhuis 1983) 

(3.18) (( Cl( t - T, t ) ) )  = exp( -iwL7) Tr dtZ+( T)( 6d). 

Here Z,( t )  follows from Zo( t )  as defined in (3.9) by replacing WO by W+, defined by 

W+a = A 1 (Peal', + PgaPg) + A2P,aPe (3.19) 

where hl is the decay rate of the field correlation function of the incident radiation, 
which is equal to the bandwidth, and h2 is the decay rate of the correlation function 
of the square of the electric field. It is known (Swain 1980) that Gaussian phase 
fluctuations can be accounted for by simple substitution rules. The fluorescence 
spectrum in the steady state is now 

A 
((Il( t, U ) )  =- Re Tr dti(w - wL- L+)-'(6d)  (3.20) 

lr 

with 
L, = Ld - iT - i W,. (3.21) 

As a result of the stochastic averaging, this spectrum is independent of time. 
The effect of collisions of the atom with foreign-gas particles can be incorporated 

in the description. The main modification is that we must add a collisional relaxation 
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operator -i@(O) to the Liouville operator Lo, equation (3.10), which affects the 
steady-state density matrix 6, and we must add a frequency-dependent collision 
operator -i@(w - w L )  to L,, equation (3.21), thereby modifying the spectrum. Explicit 
expressions for @ are known in the literature (Nienhuis 1982, Arnoldus and Nienhuis 
1983). 

The spectrum of fluorescence separates into three lines in the limit that the 
precession frequency 

R’= A[ l  +f12/A2]1’2 (3.22) 
is large compared with the spontaneous decay rate, the collisional relaxation rate and 
the bandwidth h l  (Mollow 1969). 

4. The quasi-distribution function 

The spectrally resolved intensity correlation function 1, as given by (2.9) contains the 
quasi-distribution function 12, equation (2.10). In general many different orderings of 
the time values occurring in (2.9) and (2.10) can arise, since t 2 - ~ 2  can be smaller 
than tl ,  or even smaller than tl - T ~ ,  even though t2 is larger than tl in (2.9). Substituting 
(2.10) into (2.9) requires also substituting the values tl-T1 and t 2 - ~ 2  for tl and t2 in 
(2.10), and the resulting time arguments, tl - T ~ ,  t2- T ~ ,  tl - T~ - T ; ,  t2- T ~ -  T ;  can be 
ordered in six different ways. This situation simplifies considerably if we restrict 
ourselves to the reasonable case that the time resolution A T  of the photon detection 
is much better than the time difference t2- tl. Hence we assume 

AT<< t 2 -  t l .  (4.1) 
One notices that in the opposite case A T  3 t2 - tl even the time order of the two detected 
photons would be unobservable. The assumption (4.1) restricts the range of interest 
of the four integration variables T ~ ,  T ~ ,  T ;  and T;.  Only small values of T~ contribute 
to (2.9) as a result of (4.1), and we may assume that t 2 - ~ 2  is larger than tl. After 
substituting (2.10) into (2.9), and performing the integration over w ; ,  the range of 
interest of T ;  is likewise restricted to values small compared with t2-t l ,  since the 
spectral resolution Aw, or the spectral width of s(w,  T ) ,  must be larger than ( t 2 -  f1)-’. 
Hence when the inequality (4.1) is obeyed, we only have to consider one single ordering 
of the time arguments 

When we express I2 in terms of the dipole correlation function C2 as defined in (3.14) 
we obtain the equality 

f 2 - 7 2 3 t 2 - 7 2 - 7 ; 3  t l - T l 3 t l - 7 1 - 7 ; .  (4.2) 

Mfl, w l ;  f 2 , w z )  

+exp(iwlT1 -iw2~;)C2(tl  - T ; ,  t 2 ;  t 2 -  T; ,  t , )] .  (4.3) 
As a result of the argument given above, we only have to account for values of T ;  

that are smaller than t2-t l .  An explicit evaluation of the stochastic average of the 
two dipole correlation functions occurring in (4.3) can be performed along the same 
lines that led to (3.18),  with the result 

((C2(tl - T i ,  t z -  T i ;  t 2 ,  r1>>> 

= exp[-iwl(T; + ~h)]Tr  dtZ+(T;) ( {Zo( t2-  T ; -  t l ) [ d Z + ( ~ ~ ) ( c 7 d ) ] } d )  (4.4) 
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and 

( (CZ(t l -T; ,  tz; t 2 - &  t l ) ) )  
=exp[-iw,(~i - T;) ]T~ d Z - ( T i ) { d t Z o ( t 2 - ~ &  - t l ) [ d t Z + ( ~ ; ) ( 6 d ) ] ) .  

(4.5) 

Here 2- follows from 2, by replacing WO by W- in (3.9), with 

W-U= A,(P,UP,+P,UP,)+A~P,UP~. (4.6) 

After some rearrangements, we obtain from (4.3)-(4.5) the explicit result for the 
stochastic average of the quasi-distribution function 

((Uti, w1; t 2 ,  w2) ) )  

V f l  

-- - 2. Re Jo dT; exp[i(w2-wL)~;] Tr dtZ+(T;)  

i 
0 1  - W L  - L, 

x {  [ 2 ~ ( l 2 - T ~ - l l )  ( 6 d )  +Hermitian conjugate 

(4.7) 

The upper limit t 2 -  tl for T ;  is explained above. We wish to emphasise that (4.7) is 
not necessarily a good approximation for the quasi-distribution function for all values 
of wl, w2 and the time difference t 2 - t l .  In particular, the contribution to the integral 
in (2.10) from values T ;  > t 2 -  tl is omitted. On the other hand, for a time resolution 
obeying (4.1), we can substitute (4.7) into (2.8), and obtain a reliable result for the 
observable two-photon probability density I;, as argued above. 

We notice that (4.7) depends on the time difference t 2 - t l ,  but not on the times 
tz and tl separately, as it should be in the steady state. Moreover, equation (4.7) is 
seen to contain a convolution between the Fourier-Laplace transforms of Z+ and Zo, 
which reflects the fact that a spectrally resolved photon detection at time t2 depends 
upon the evolution of the density matrix in the recent past. 

When t2 - tl is large compared with the spontaneous lifetime of the excited state, 
the evolution operator Zo in (4.7) will have reached its asymptotic limit for all values 
of interest of 7;. In this case we obtain 

( ( M f l ,  w1; t2,wz)))  =((11(h, w1) ) ) ( (11( t2 ,4 ) )  (4.8) 

which, when substituted in equation (2 .8 ) ,  gives a similar factorisation for ( ( f 2 ) ) .  

The effect of binary collisions with foreign-gas particles can be included in the 
formal result (4.7) in exactly the same fashion as before (Nienhuis 1982, Arnoldus 
and Nienhuis 1983), giving rise to the appearance of the collisional relaxation operator 
CP in the denominators in (4.7), and a similar modification in 2, and Z,. We shall not 
reproduce details of the derivation here. In the final result of the next section we shall 
simply indicate the additional contribution of collisions. 

5. Photon correlations between spectral lines 

The combination of equations (2.8) and (4.7) gives the spectrally resolved two-photon 
probability density for not too short time delays t 2 - t l .  This result depends on the 
details on the function s(w,  T ) ,  which is determined by the spectrometer. 



970 H F Arnoldus ana! G Nienhuis 

5.1. The three-line spectrum 

A special case of practical interest is the intensity correlation between the three different 
lines in the fluorescence spectrum of the two-state atom. Hence we consider the 
situation where R’, equation (3.22), is large compared with the widths of the lines, 
which are determined by the spontaneous decay rate A, the bandwidth A l  and the 
collision rate, and write 

R’ >> w (5.1) 
where w denotes the order of magnitude of the linewidths. The inequality (5.1) is 
obeyed for large values of the detuning A from resonance, or for large values of the 
Rabi frequency R. The positions of the three lines in the spectrum are mainly 
determined by the eigenvalues of the Liouville operator Ld, which is the dominant 
part of L, in (3.20). It is convenient to introduce the dressed-atom eigenstates, which 
are eigenvectors of the dressed-atom Hamiltonian Hd, defined in (3.8). The eigenstates 
are (Cohen-Tannoudji 1977) 

11) = lg) cos $6 - le) sin $0 

12) = lg) sin $e + le) cos $e 

tan f3 = Cl/A 
with 

1 - - z ~ = =  e<$=. 
The corresponding eigenvalues are 

(5.4) 
The Liouville operator Ld has the eigenvector in Liouville space 11)(2/ with eigenvalue 
R’, the eigenvector 12)(11 with eigenvalue -a’, and the two eigenvectors 12)(21 and 
/1)(1( with eigenvalue 0. The three lines in the fluorescence spectrum correspond to 
these three eigenvalues, and are positioned at w = wL + R’ (the three-photon line, T), 
at w = wL-R’ (the fluorescence line, F) and at w = wL (the Rayleigh line, R). In the 
secular approximation (5.1),  the steady-state density matrix 6 is to a good approxima- 
tion diagonal in the dressed states, as can be shown from (3.12). The result is (Arnoldus 
and Nienhuis 1983) 

El = $ha’ E 2 -  --- :ha’. 

@ = Il)n1(1l+ 12)n2(21 ( 5 . 5 )  

with dressed-state populations 

ill = P/(P + 4 )  n2 = q / ( p + q )  
with 

p = Ag: +2Algi  + k(n, A) 

q = Ag$ +2A1gi + k(R, A). 

Here we introduced a notation that is convenient in the following 

= (R’ + A)/2R’ g, = cos’ 

g,=sin2$e=(R’-A)/2R’ (5.8) 
g, = cos $e  sin ;e = R / ~ R ’  

and k(R, A) is the rate of optical collisions, defined as collisions inducing a transfer 
between the dressed states. 
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The strengths of the three lines are easily obtained from (3.20). The contribution 
to each separate line arises from the action of the denominator on the corresponding 
eigenvector subspace. We introduce the projection operators on each of these subspaces 
F, T and R by the definitions 

9 F U  = 12)(21U11)(11 9 T U  = 11)(11U12)(21 

9Ra = 12)(21 a12)(21 + 1 I U I  1 )( 1 I * (5 .9 )  

Then the strengths of the lines are 

Sa = A  Tr dt9,(6d) (5.10) 

for a =F, T, R. The explicit results are (Arnoldus and Nienhuis 1983) 

(5.11) 

5.2. Photon correlations 

The intensity correlations between the three lines can be evaluated in largely the same 
fashion, when we take equations (2.8) and (4.7) as our starting point. We choose the 
smoothing function in such a way that the three lines are still separated in TI. Hence 
we choose the spectral resolution Aw so as to obey the inequalities 

(5.12) w << Aw << fl’ 
so that the inherent time resolution can be supposed to obey the inequalities 

fir-’ << AT<< w-’. (5.13) 

Hence the passband width of the spectrometer is large compared with the linewidth, 
but small compared with the frequency separation between lines. We recall moreover 
that the time resolution is supposed to obey the inequality (4.1), which is only consistent 
with (5.13) when tZ- t1 >>ar-’. This is a reasonable supposition, since the spectral 
resolution of the lines is only meaningful on a time scale large compared with their 
inverse frequency distance. 

The frequency positions of the lines are denoted as w , ( a  =F, T, R) and we wish 
to evaluate the quantities ( (Tz ( t l ,  w,; t z ,  up))) ,  which we shall abbreviate as I ( a ,  p ;  
t z -  tl) for convenience. After substituting (4.7) into the stochastic average of (2.8), 
we obtain an involved expression containing five integrations over w ; ,  U ; ,  T ~ ,  T~ and 
T ; .  As a result of (5.12), the integration over 0; can be dealt with in the same fashion 
as in the evaluation of (5.10) from (3.20), and the last part of (4.7) gives a term 
d t9” , (d ) .  Since the linewidth is small compared with the width Aw of the function 
s, we can replace s ( w ; ,  T ~ )  by s(0, T ~ ) .  The subsequent integration over T~ can be 
performed by noting that 2, gives a rapidly oscillating contribution when operating 
on an off-diagonal part in the dressed states, which can be entirely neglected after 
integration, whereas the diagonal part gives a slowly varying term (at a rate of order 
w), which is effectively constant over times of the order of AT, due to (5.13). Hence 
the net result is that we can restrict 2, to the subspace of diagonal density matrices, 
and the integration over T~ of s(0, T ~ )  gives rise to the factor 

(5.14) 

which has the physical significance of the transmission factor of the spectrometer for 
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a monochromatic steady-state light beam with a frequency coinciding with the setting 
frequency. The integration over wb limits the range of interest of 7; values, which 
must be small compared with w-' .  The same considerations apply to the integrations 
over 7; and and the final result for the intensity correlation between the various 
spectral lines is 

(5.15) 

for t 0. Here M is a two-dimensional matrix that is defined as the restriction of iLo, 
equation (3.10), to the space of diagonal density matrices. When binary collisions are 
accounted for, we simply replace iLo by iLo+@(0).  On the basis 11)(11, /2)(2/ the 
matrix M takes the explicit form 

I ( a ,  p ;  t )  = ( lA)* Tr dtPp{[exp(-Mt)B,(dtP,ol(c+d))]d} 

.I=(-; -;) (5.16) 

with p and q given by (5.7). (Note that the stationary density matrix (5.5) is eigenvector 
of M with eigenvalue zero.) 

5.3. Structure of the correlations 

Equation (5.15) constitutes a considerable simplification as compared with equation 
(4.7) and it is only justified in the special case of well separated lines, which are 
detected with a spectral resolution Aw that discriminates the lines in a perfect way, as 
indicated in (5.12). 

It is instructive to compare equation (5.15) with the common intensity correlation 
function of resonance fluorescence with no spectral resolution (Carmichael and Walls 
1976) 

I ( t )  = A 2  Tr dt[exp(-iLot)(dt6d)]d. (5.17) 

The structure is obviously the same. The spectral resolution of the line a gives rise 
to the projection operator Pm, which effectively projects the dipole operator d onto 
the transition between dressed states. The projection operator PR in (5.15) selects 
the diagonal part of the density matrix of the atom after the emission of a photon in 
the line a. 

The result (5.15) is derived in the case that t > 0, which means that the photon in 
the line a is detected prior to the detection of a photon in the line p. From the 
definition of the probability density it is obvious that for negative times the correlation 
functions are determined by the symmetry relation 

I ( a ,  p ;  t )  =I@, a ;  - t ) .  (5.18) 

We can express the correlation function (5.15) in a more compact way by introducing 

d,u=AP,[d'P',(ud)]. (5.19) 

Furthermore, we shall assume ideal transmission, and we put the transmission factor 
5 equal to unity. Then the two-photon correlation function (5.15) takes the form 

I ( a , p ;  t ) = T r d p  exp(-Mt)d',c+. (5.20) 

Obviously, the operator d, describes the effect on a density matrix of the atom after 
a photon emission in the line a. Equation (5.20) then simply reflects successively an 

the operators d, for a = F, T, K, by the defining relation 
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emission of a photon a, evolution of the density matrix during a time t, and finally an 
emission of a photon p .  This interpretation of equation (5.20) is confirmed by noting 
that the line strengths (5.11) obey the equations 

S ,  =Tr &e. (5.21) 

The effect of the various emissions on the atomic density matrix is illustrated by the 
equalities 

= A&niIl)(lI ( 5 . 2 2 ~ )  

&TU = A&niI2)(21 (5.22 b)  

dRu = Agiu ( 5 . 2 2 ~ )  

(5.23) 

Hence the probability of a photon in the fluorescence line is proportional to the 
population of state 12), and this emission corresponds to a transition to state 11). The 
reverse is true for a photon in the three-photon line. An emission of a Rayleigh photon 
does not affect the density matrix at all. 

These results are in full agreement with the simple picture of the fluorescence 
spectrum as resulting from transitions between dressed-atom states (Cohen-Tannoudji 
1977). This is illustrated in figure 1. In fact, for free atoms in a monochromatic field 
Cohen-Tannoudji and Reynaud (1979) have obtained similar results by applying rate 
equations for a cascade in a dressed atom. 

Figure 1. Illustration of the effect of emission in the various lines on the state of the 
dressed atom. Fluorescent emission corresponds to downward transitions in the ladder of 
pairs of dressed states. Emission of a photon in the three-photon line (T) is seen to change 
the dressed state 11) into the dressed state 12), giving rise to a strongly enhanced probability 
for subsequent emission of a photon in the fluorescence line (F). In the same way, emission 
of an F photon corresponds to a transition from 12) to ]I), giving rise to an enhancement 
of the probability for subsequent emission of a T photon. Emission of a photon in the 
Rayleigh line (R) leaves the state of the dressed atom unchanged. 
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6. Explicit results 

The photon correlation functions between the spectral lines of the fluorescence triplet 
are easily evaluated from (5.20) and (5.22), by making use of the explicit expression 
(5.16) for M. Equation (5 .22~)  indicates that the density matrix is not modified by 
emission of a Rayleigh photon, and we find that the correlation functions I ( a ,  p ;  t )  
simply factorise when either a or p denotes the Rayleigh line (R). Hence 

The steady-state intensities Sa of the lines are given by (5.1 1) and (5.6). The correlation 
functions I ( a ,  p ;  t )  for negative time values are obtained from (6.1) and (6.2) with 
the symmetry relation (5.1). Equations (6.1) and (6.2) generalise the results of 
Apanasevich and Kilin (1979) and Cohen-Tannoudji and Reynaud (1979) in that we 
include a finite bandwidth and collisions. 

We conclude that the detection of a photon in the Rayleigh line is uncorrelated to 
later or previous emissions in any one of the lines. Photons from the same sideband 
display antibunching in time: following the detection of a photon in any one of the 
sidebands (T or F), a subsequent detection of a photon in the same sideband is only 
possible after a finite recovery time of the order of ( p + q ) - l .  On the other hand, 
photons from opposite sidebands tend to bunch: immediately following the detection 
of a photon in one sideband, there is an enhanced probability for detecting a photon 
in the other sideband. These results can be understood in a dressed-atom picture, as 
illustrated in figure 1 (Cohen-Tannoudji and Reynaud 1979). 

These results are in line with the experiment of Aspect et a1 (1980). These authors 
measured the number of detected pairs of photons, one from the fluorescence line and 
one from the three-photon line, as a function of the time delay between the detections, 
for free atoms in the case of rather low values of a/A. In this case p = Agg is much 
larger than q = Ag-f.. When t is the time delay between detection of a photon from 
the three-photon line and a photon from the fluorescence line, equations (6.2) show 
that the number of detected pairs is proportional to 1 + ( p / q )  exp[-(p + q)t]  for positive 
delay times t, and proportional to 1 + ( q / p )  exp[(p+q)t] for negative delay times. 
Hence this number of pairs should display a dramatic increase for t values just above 
zero. The increase for t values just below zero is only very modest. In other words, 
the photons from the two sidebands tend to be detected in a definite time order. This 
is precisely what is observed by Aspect et a1 (1980). 

At the same time, our results demonstrate that the increase gets less asymmetric 
around zero delay times when f l / A  gets larger, and also as a result of a finite bandwidth 
A, or of optical collisions, which tend to decrease the relative difference between p 
and q. 
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The uniform decay rate p + q  of all the correlation functions (6.2) is increased by 
collisions and by a finite bandwidth. For free atoms and monochromatic irradiation, 
this rate decreases with increasing R/A. 

For non-monochromatic radiation we find from (5.7) 

p + q  = A +  (4hl-2A)gi (6.3) 
so that p + q  increases for increasing values of R/A when A,>;A. The effect of 
collisions is the same as the effect of a finite bandwidth. In the impact limit, the rate 
of optical collisions obeys the equality 

k = 2 g i  y (6.4) 
with y the low-intensity impact width. Hence the contribution of collisions to p and 
to q is accounted for by replacing h l  by hl + y. 

7. Discussion 

We have introduced a general expression (2.8) and (2.9) for the two-time correlation 
function of spectrally resolved photons detected from a radiation field. This quantity 
is not a property of the field alone, but it depends also on the characteristics of the 
spectrometer used for the spectral resolution. This is analogous to the definition of a 
time-dependent spectrum (Eberly and W6dkiewicz 1977, Nienhuis 1983). The proper- 
ties of the spectrometer are contained in the smoothing function s( w ’ ,  7) occurring in 
(2.8). 

We apply this general result for the study of the photon correlations between the 
three lines in the spectrum of resonance fluorescence of a two-level atom. The 
observance of these correlation functions requires a spectral resolution Ao of the 
spectrometer that obeys the inequalities (5.12). The general result for the correlation 
functions for the various combinations of two lines in the spectrum is given in equation 
(5.20), and explicit results are represented by (6.1) and (6.2). The general conclusion 
is that photons in the central Rayleigh line of the fluorescence triplet are emitted in 
a fully random way, with no correlation with later or previous emissions. Two photons 
in the same sideband display antibunching in time, whereas two photons from opposite 
sidebands tend to bunch. This bunching occurs in an asymmetric way, and for not too 
high values of R/A, detection of a photon from the three-photon line tends to precede 
the detection of a photon from the fluorescence line. This in line with the experimental 
observation by Aspect eta1 (1980). The behaviour of the correlation function I (T ,  F; t )  
can be characterised by the ratio 

and 

where +O denotes the limit 23.0 (the F photon follows the T photon with very small 
time delay), and likewise -0 denotes the limit tT0. The values of these ratios (7.1) 
and (7.2) as a function of f l / A  are illustrated in figure 2. A finite bandwidth tends to 
decrease the asymmetry in the time order, and collisions have the same effect. 

The regression of the correlation function is governed by the uniform rate p + q ,  
which is given by (6.3) in the absence of collisions. For low values of f l / A ,  this rate 
is simply the Einstein coefficient for spontaneous emission. In the limit of large delay 

I(T,  F; +O)/I(T, F; a) = (P + q ) / q  = R+ 

I (T ,  F; -O)/I(T, F; a) = ( p  + q ) / p  = R- 

(7.1) 

(7.2) 
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0 1 2 3 

R I A  

Figure 2. Plots of the enhancement factors R ,  and R-, defined in (7.1) and ( 7 . 2 ) ,  
characterising the values I(T, F; *O) .  The insertion shows the qualitative behaviour of 
I(T, F; t ) .  Curves A correspond to the case of monochromatic incident radiation in the 
absence of collisions (A, + y = 0). Curves B correspond to the case A ,  + y =bA, and curves 
C to A, + y =$A. The asymptotic values of R,  and R- for n/A+c~l are 2. 

times t, the correlation functions become equal to the product of the intensities of the 
separate lines, as expected. 

The correlations between detected photons from the two sidebands can be under- 
stood in a simple way from a dressed-atom picture, as indicated in figure 1. The 
occurrence of bunching between two photons from different sidebands may seem to 
contradict the universal property of antibunching of two subsequently emitted photons 
by a two-level atom (Carmichael and Walls 1976). The solution of this apparent 
contradiction lies in the fact that the observance of this bunching property requires a 
spectral resolution better than a'. Therefore rapid oscillations on a time scale Cl-' 
are washed out by the limited time resolution inherent in the spectral separation of 
the lines. These oscillations can be observed when one foregoes any spectral resolution, 
and the antibunching is restored on the rapid time scale a'-'. 

The correlation functions (5.20) for detection of two frequency-resolved photons 
can be directly generalised to obtain an expression for the probability density for 
detecting a photon in line a1 at time t l ,  . . . and a photon in line a,  at time t,. This 
n-fold distribution function takes the form 

Ll(a1, t1; * .  a n ,  t,) 

=Tr  dmn exp[-A4(t,-t,-l)]. . . d m , e x p [ - M ( t , - t , ) ] d ~ l ~  (7.3) 
for t, > t,-l . . . > t l .  This expression is meaningful only when all the time differences 
ti - ti-l are large compared with a'-'. This result can be applied to study the complete 
probabi!ity distribution of the numbers of emitted photons in the three spectral lines 
in a given time interval. 



Photon correlations in resonance fluorescence 977 

References 

Apanasevich P A and Kilin S Ja 1979 J. Phys. B: At. Mol. Phys. 12 L83 
Arnoldus H F and Nienhuis G 1983 J. Phys. B: At. Mol. Phys. 16 2325 
Aspect A, Roger G,  Reynaud S ,  Dalibard J and Cohen-Tannoudji C 1980 Phys. Rev. Lett. 45 617 
Carlsten J L, Szoke A and Raymer M G 1977 Phys. Rev. A 15 1029 
Carmichael H J and Walls D F 1976 J. Phys. B: At. Mol. Phys. 9 1199 
Cohen-Tannoujdi C 1977 Frontiers in Laser Spectroscopy; Proc. 27th Les Houches Summer School ed R 

Balian, S Haroche and S Liberman (Amsterdam: North-Holland) 
Cohen-Tannoudji C and Reynaud S 1979 Phil. Trans. R. Soc. A 293 223 
Eberly J H and W6dkiewicz K 1977 J. Opt. Soc. Am. 67 1252 
Glauber R J 1965 Quantum Optics and Electronics ed C Dewitt, A Blandin and C Cohen-Tannoudji (New 

Kelley P L and Kleiner W H 1964 Phys. Rev. 136 A316 
Kimble H J and Mandel L 1976 Phys. Rev. A 13 2123 
Lampard D G 1954 J. Appl. Phys. 25 803 
Mollow B R 1969 Phys. Rev. 188 1969 
Nienhuis G 1982 J. Phys. B: At. Mol. Phys. 15 535 

Page C H 1952 J. Appl.  Phys. 23 103 
Paul H 1982 Rev. Mod. Phys. 54 1061 
Renaud B, Whitley R M and Stroud C R Jr 1977 J. Phys. B: At. Mol. Phys. 10 19 
Swain S 1980 A d v .  At. Mol. Phys. 16 159 
W6dkiewicz K 1980 Phys. Lett. 77A 315 

York: Gordon and Breach) 

- 1983 J. Phys. B: At. Mol. Phys. 16 2677 


