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Abstract . We study the conditions for sub-poissonian photon statistics and
squeezed states in the field of resonance fluorescence of a two-state atom . These
conditions as a function of the detuning from resonance, the linewidth and the
Rabi frequency have some overlap, but they are largely complementary . Super-
poissonian statistics arise for small linewidths and large detunings, irrespective of
the Rabi frequency. Squeezed states require small linewidths and either low or
moderate Rabi frequencies, or large detunings from resonance .

1 . Introduction
The fluorescent radiation field of a two-state atom is known to display two

distinct quantum features . Firstly, the fluorescent photons exhibit antibunching in
time [1, 2], which makes the steady-state intensity correlation function

I2(tl, t2) = I1f(t2 - t1) (1 .1)

disappear when the time difference t 2 - t I approaches zero . This effect, which has
been observed experimentally [3, 4], is directly understood as resulting from the fact
that immediately, after the emission of a photon the atom is bound to be observed in
its ground state, and a subsequent photon emission can occur only after a finite
recovery time. For large time differences t 2 - t l the function f approaches the
steady-state intensity I I . As a result of the antibunching property, the quantity

Q(t)= Jdti
[

	

Jdt2
t

	

[I2(tI, t2) - Ii]/IIt

	

(1 .2)
0

	

0

can easily become negative for fluorescence radiation, whereas for a classical
stochastic field the quantity Q must obviously be non-negative . Whenever Q is
negative, the number of detected photons during the time interval [0, t] has a
variance that is smaller than would correspond to a Poisson distribution with the
same photon density [5] . In this sense sub-poissonian photon statistics is an
essentially quantum-mechanical property of the field .

A second quantum feature of the fluorescence radiation is the occurrence of
reduced quantum fluctuations in the in-phase or the out-of-phase component of the
fluorescent field with respect to the incident field . As a result of the uncertainty
relation for these two components, reductions of the fluctuations in one component
can occur only at the expense of increased fluctuations in the other . These squeezed
states in the fluorescence field have recently been discussed by Walls and Zoller [6],
who pointed out that squeezed states have a negative, normally ordered variance of
one of the field components, which means that they have no classical analogue .
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In the present paper we evaluate the range of values of the linewidth, the
detuning of the incident radiation from resonance and the Rabi frequency for which
sub-poissonian photon statistics or a reduction of the quantum fluctuations occurs .
We find that these two regions are rather complementary . For a large detection
interval t the borderline between sub-poissonian and super-poissonian statistics
becomes independent of the Rabi frequency . Squeezed states can occur only when
the sum of the collisional linewidth and the bandwidth of the phase-fluctuating
incident radiation is smaller than the natural linewidth of the transition . The general
condition for the presence of squeezed states turns out to be equivalent to the
requirement that the intensity of the coherent Rayleigh line be more than half the
total intensity of the fluorescence radiation .

2 . Intensity correlation functions
It is well known that the statistics of a photon-counting experiment is determined

by the intensity correlation functions of the electromagnetic field [7, 8] . For
fluorescent radiation from a two-level atom in a laser field, the positive-frequency
part of the electric field is proportional to the atomic lowering operator [2]

d + = Ig> (el .

	

(2.1)

We define the n-fold intensity correlation function in the usual way [9, 10] :

In(t l) t2, . . . , tn)=An<d(t l )d(t 2 ) . . . d(tn)d+(t„) . . . d+(tl)>

	

(2.2)

for t„ - t o _ 1 >1 . . . >~ t I . This correlation function has the physical significance that
In dt 1 . . . dtn is the probability that the atom emits a photon in the time interval
[t 1 , t 1 +dt1 ], . . . and a photon in the time interval [tn , t o +dtn ], irrespective of what
happens at other times . Hence the intensity is expressed as the number of photons
emitted per unit time, and A is the Einstein coefficient for spontaneous emission .
The time evolution of the Heisenberg operator d(t) is determined by the propagator
of the density matrix of the atom in the field, which is written as a Liouville operator

in terms of the projector Pg =lg) <gI on the atomic ground state .
In order to proceed with the evaluation of I n we have to consider the equation of

motion of p(t) in detail . We describe the incident laser field as a classical field with a
stochastically fluctuating phase, which can account for the finite bandwidth

E(t) = Ea Re EL exp [- i(wLt + '(t))] .

	

(2 .6)

The random phase 4(t) gives rise to a bandwidth A around the central frequency (t) L .

p(t) = T(t, t')p(t') . (2 .3)

We can evaluate the expression (2.2) for the correlation function

(2 .4)In(t1 , . . .,tn)=AnTrRT(tn,tn _ 1)R . . .RT(t1i O)p(0) .

The operator R is defined as

Rp=d+pd=Pg<eI PI e> (2.5)
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The interaction with the atom in the dipole and the rotating-wave approximation is

Har(t)=-2h12dexp[-i((wLt+ti(t))]+hermitian conjugate,

	

(2 .7)

which contains the Rabi frequency f2=E OPeg •E L/ft, with Peg the dipole matrix
element of the transition . Spontaneous decay and collisional relaxation in the impact
limit are included by the effective operators [11]

rp=- A(Pep+pPe -2Rp),

	

l
(2.8)

(DP=(Y+if )PepPg +(Y - il3)PgpPe, I

with y and /3 the collisional width and shift . From equation (2.7), one notes that the
hamiltonian is time-dependent and stochastic . We can eliminate the rapid oscil-
lations by a unitary stochastic transformation in Liouville space [12], and introduce
the transformed density matrix

in terms of the Rabi frequency S2 and the detuning from resonance 4= wL - wo
The evolution of v(t) is written as

The correlation function I,, is still a stochastic quantity . From a previous paper
[12], we know how to deal with the stochastic averaging of equation (2 .11) when the
phase 0 can be treated as a process with independent increments [13] . The resulting
equation of motion for the stochastically averaged density matrix is

i dt v(t) = (Ld -ir -i 1 -i.1K2)a (t),

	

(2.18)

U(t) =exp [i(cwLt+ f (t))K]p(t), (2.9)

with

Kp=[PQ , p] . (2 .10)

The transformed density matrix a obeys the stochastic differential equation

i dt a(t) =[Ld-ir-iD-t/i(t)K]a(t), (2.11)

where

Lda=[Hd , v] . (2.12)

The operator Hd is the dressed-atom hamiltonian

Hd= -ib[0(PQ-Pg)+S2(d+d+)] (2.13)

6(t)= U(t, t')a(t') (2.14)

and the connection with the propagator of p(t) is given by

T(t, t')p(t') = exp [-i(wLt+s/i(t))K]U(t, t')o(t') . (2.15)

From the definition of K and R it then follows that

RT(t, t')p(t') = R U(t, t')v(t'), (2.16)

which yields the expression for the correlation function

t")=A"TrRU(t,,,ti_1)R . . .RU(t1,0)a(0) . (2.17)
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which contains an effective relaxation operator AK' arising from the phase
fluctuations . The corresponding propagator for the averaged density matrix is given
by

6(t) = U(t- t')6(t') .

	

(2 .19)

The t„ dependence of U(tn, t,-,) is governed by a similar equation to (2.11), but with
a modified initial condition U(t„_ 1 , t,-,) =1 . We can average the right-hand side of
equation (2 .17) over the phase fluctuations during the interval [t n_ 1 , t,,] . Then we can
average the corresponding initial condition over the fluctuations during the
preceding interval [t n _ 2 , t„_ 1], etc . Furthermore, we assume that the atom is in its
steady state in the radiation field, which means that we can write

U(ti)E'(0) = 6(0) = 6o,

	

(2 .20)

where 6, is the stochastically averaged steady-state density matrix of the atom,
defined by the equation

so that every operator U in equation (2 .22) acts on P9 only . With the definition

with ne =<ejaoje> the average population of the excited state . A similar result for free
atoms in a monochromatic radiation field has been obtained by several authors
[5, 9,10,141.

From (2.24) it is obvious that f(t) is the emitted intensity at time t, with the
condition that there was an emission at time t=0 . Hence

f (0) = 0,

	

(2 .27)

which causes each n-fold intensity correlation function to vanish when two time
arguments approach each other . This reflects the antibunching property that two
subsequently emitted photons tend to be separated in time [1] .

3 . Photon statistics
The statistics of the photons counted by a detector in a given time interval [0, t]

can be derived entirely from the distribution functions C„, of detection times . These

f(t) = A Tr Pe U(t)Pg , (2 .24)

we finally have the result for the correlation functions :

In(t1, . . .,tn) =f(tn - tn-1)f(tn-1 - t"-2) . . . f(t2- t1)I1 (2 .25)

for t o >, t" _ 1 >, . . . >t1, and where

I1 = An Q7 (2.26)

(L a -iF-iD-iAK2)6o =0 . (2 .21)

Our final result for the n-fold correlation function is

1.(t I, . . ., t")=A"TrRU(t„-tn_1)R . . . RU(t2 -t 1 )R6o . (2.22)

For the last step in the evaluation of I", we note that

Ra = Pg Tr Pea, (2 .23)
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distribution functions are defined by requiring that

Cm(t l , . . . , tm) dtldt2 . . . dtm

is the probability of detecting a photon in the time interval [t 1 , t l +dt l ], . . . and a
photon in the time interval [tm,tm +dtm] . We introduce the probability a(0 a<1)
that an emitted photon is seen by the detector . Then it is rather obvious that the
distribution functions Cm are related in a very simple fashion to the correlation
functions I", according to

Cm(tl, . . . , tm)=amlm(tI, . . . , tm) .

	

(3 .1)

It is a standard problem in stochastic theory to derive from the distribution functions
Cm the probability distribution p"(t) for detecting precisely n photons during the
interval [0, t] . The factorial moments

sm(t)=<n!/(n-m)!>

	

(3 .2)

are directly related to the distribution functions C m by the integral relation [13, 5, 14]
rm

	

t2
sm(t)=m!

J
dtm

	

dtm_1 . . .

	

dt 1 Cm(tl, . . . , t m ) .

	

(3 .3)0

	

f 0

	

0

The probability distribution p"(t) is related to the factorial moments by the
equations [5]

1
oo

(-1)k
pn( t ) = -

	

Sn+k(t),

	

(3.4)- Y-n! k=0 k!

as can be checked by substitution of equation (3 .2) . When a=1, each emitted photon
leads to a count in the detector, and then the resulting distribution p"(t) refers to the
statistics of emitted photons . In reality the value of a will be diminished, as a result of
both the finite aperture angle of the detector and its quantum efficiency .

Since we know the intensity correlation functions I" explicitly from equation
(2 .25), we can evaluate the factorial moments sm and the photon number probabilities
p" directly . We adopt a Laplace transformation, and we introduce

An(v)=
J

dtexp(-vt)p"(t),

	

(3 .5)
0

with Rev > 0, and likewise we define the Laplace transform sm(v) of sm (t) . Explicit
expressions for sm result from equation (2.25), and we find that

so(v) =1 /v
sm(v)=m!(aJ(v))m-1aAne/v2 if m>1 .

	

(3.6)

Substituting this result in equation (3 .4), we obtain

P0(v)=1/v -aAne/v 2 (1+06 v)),

"(v) = aAne[af(v)]n-1 /v2(1 + a f(v))n+ 1 if n,1 .
(3.7)

An explicit expression for the Laplace transform, (v) results from equations (2 .24),
(2 .18) and (2.19) . The formal result

J(v)=ATrPe(v+F+ (1) +AK2 +iLd ) -1P9

	

(3.8)
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allows direct evaluation, with the result

J(v) =AS2 2(v +2A + y +2)/2vD(v),

	

(3 .9)

with

D(v)=(v+A)[(v+ZA+y+1)2+(0-/l)2]+522(v+- A+y+A) .

	

(3 .10)

One notes that f(t) is simply proportional to the twofold intensity correlation
function I2 (t o , t o + t), which has been studied by several workers [1, 2, 9, 15] . The
long-time limit of f(t) obeys the equality

In figures 1 and 2 f(t) is plotted for some representative examples. In the special case
of free atoms in a monochromatic radiation field at resonance (y = 2 = A = 0), equation
(3 .9) and its inverse Laplace transform coincide with the result obtained by Mandel
[5] .

Following Mandel [5], we introduce the normalized correlation function K(t) by
the defining relation

f(t) =Ane(1-K(t)),

	

(3 .13)

so that K(0)=1 and K(c0)=0 . When K would be zero for all times, the distribution
functions Cm would factorize into CT, indicating that subsequent photons would
arrive in a totally uncorrelated fashion . Likewise the factorial moments sm would
factorize according to the relation sm =si, and the photon statistics would be

1 2
3

	

At

Figure 1 . Behaviour of the intensity correlation function as expressed by the function f(t),
defined by equation (2 .24) . Curve (a) corresponds to the values t1=z, S=0 and y2 =2,
and gives rise to the minimum value of Q (equation (3 .18)), and thereby to the strongest
sub-poissonian statistics . Curve (b) corresponds to the values t1=1, 62 =12 and C2 = 13,
which gives rise to the same asymptotic value floc) =4.

so that

limf(t)=1im vf(v)=An .,
t-w

	

v10
(3.11)

ne=n2(!A+y+A)/2D(0) . (3.12)
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1 2
3 At

Figure 2 . Behaviour of the function f(t) (equation (2.24)) for the values 6' = 48, y2 = 96 and
?I=2' . The average of the upper and lower envelopes of the rapid oscillations lies above
the asymptotic value f(oo)=4, which gives rise to a positive value of Q, and hence to
super-poissonian statistics .

poissonian . As a measure of the deviation from poissonian statistics, Mandel [5]
introduced the quantity

Q(t) =(s2(t)-St(t)2)lst(t),

	

(3.14)

which is equivalent to equation (1 .2) . If we substitute equation (3 .3) in equation
(3 .14), we obtain

Q(t) _ - 2aAne J
t
dt (t-t) x(t)/t .

	

(3 .15)
0

Mandel [5] has demonstrated that Q is a negative quantity for monochromatic
radiation on resonance, which means that the variance of the detected number of
photons is smaller than it would be for Poisson statistics with the same photon
density. Here we wish to point out that sub-poissonian statistics is not a necessary
consequence of the antibunching property of fluorescence radiation . In fact, for large
detection times t the quantity Q approaches the value

Q= -2aAn R(0) .

	

(3 .16)

For convenience we express the linewidth, the Rabi frequency and the detuning as
dimensionless quantities by introducing

q=(zA+y+2)/A, ~=52/A, 6=(A-f3)/A .

	

(3 .17)
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From the explicit result (3 .9) for f (v), we derive

--adz 82(1 -11) - 12 ( 1 +r1)
.

(r12+r1C2+62)2

	

(3 .18)

For 6 = 0, this is always a negative quantity . Its minimal value occurs at t? = 2 , S = 0,
y2 = z , and it takes the value Qm ;fl _ - 3oc/4. Naturally, a small detection efficiency
tends to diminish the correlation between the few photons that are detected, and the
distribution becomes more poissonian. For values of the detuning obeying

(1-i1)52 >r1 2(1 +q),

	

(3 .19)

Q is larger than corresponding to a Poisson distribution, and we obtain super-

poissonian statistics, even though the antibunching property of the photons is
preserved . This may be understood by noting that for large detunings and not too
large linewidths the behaviour of f(t) for small times is governed by rapid optical
nutations [16], which tend to make f larger, on average, than its large-time limit An. .
For these intermediate times the function K is negative, which leads to an effective
bunching of subsequent photons . This behaviour off(t) is illustrated in figure 2 . The
regions of sub-poissonian and super-poissonian statistics in the Y1-6 plane are
indicated in figure 3 . Super-poissonian statistics can only occur when v1 < 1, which
means that the sum of the collisional linewidth y and the laser bandwidth ) is smaller
than the natural linewidth'A . It is remarkable that these regions do not depend on
the Rabi frequency .

8

6

6 4

2

0

-2

-4

-6

-8

0 .6

SUPER

0.8

SUB

I
Figure 3 . Regions in the n-S plane where Q (equation (3.18)) is positive or negative,

corresponding to super- or sub-poissonian photon statistics . The regions are found to
be independent of the reduced Rabi frequency C .
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Recently, Singh [17] has shown that super-poissonian photon statistics can occur
for zero detuning (6=0) in a limited range of observation times t when the atom is
prepared in its excited state at the beginning of the observation interval . He also
demonstrated that a finite bandwidth can make the photon-number distribution
narrower. The latter conclusion can also be drawn from our results, which are valid
in the steady state and in the limit of a large observation interval, and which allow a
detuning from resonance .

4. Squeezed states
As pointed out in § 2, the statistical properties of the fluorescent radiation field are

directly related to the statistical properties of the atomic dipole operator. Therefore
the occurrence of squeezed states in the fluorescence can be studied by examining
squeezed states in the atom in the driving field [6,18] . We introduce the Pauli
operators, with their usual definition

SX =d+d+, S,,=-id+id+, SZ=Pe-P9 .

	

(4.1)

In the stochastically rotating frame, where the density matrix a obeys the Liouville
equation (2 .11), the operator SX is proportional to the in-phase component of the
fluorescence field, whereas S,, is proportional to the out-of-phase component . These
two operators obey the relations

[S.,SY,]=2iSz7 Sx=S,2,=1 .

	

(4.2)
Hence their variances are

<ASx)=1-Pz, <ASy)=1-Py,

	

(4.3)

where we use the expansion

60 = 2[1 + P • S]

	

(4.4)

of the stochastically averaged steady-state density matrix . This expansion is
equivalent to the vector equality

<S)=P .

	

(4.5)

From the uncertainty relation

<ASx> <ASy) % <SZ) Z ,

	

(4 .6)

it follows that squeezing occurs in S, when [6,17]

1-Px < jPz 1,

	

(4.7)

and then squeezing is also present in the in-phase component of the fluorescence
field. Likewise, squeezing in the out-of-phase (absorptive) component requires that

1-Py < API .

	

(4.8)

The vector P can be regarded as the polarization vector of a fictitious spin 2 that
models the two-state atom; the magnitude of this vector cannot be greater than 1 .

The conditions (4.7) and (4.8) are readily generalized to arbitrary linear
combinations

S=aSx +bS5 ,

	

(4 .9)
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with a and b two real numbers obeying the equality a2 + b2 = 1 . The condition for
squeezing in this component (4.9), or, equivalently, in the corresponding phase
component of the fluorescence, is found directly to be

1-(aPX +b P,) 2 < IPZ 1 .

	

(4.10)

As a quantitative measure determining the amount of squeezing, we introduce the
quantity

R= [1-(aP,,+bP5,)2 - IPZI]/IPZI .

Like the quantity Q introduced in equation (3.14), R can never be smaller than -1 .
The condition for squeezing is that R must be negative . For a given density matrix
Q o , or for a given polarization vector P, the minimum value of R occurs in the phase
component obeying alb=Px/Pi„ so that the unit vector (a, b) is directed along the
projection of P on to the x -y plane . For this phase component, R is given by the
relation

R=(1 - Px -P~2, - IP=)I1PZI

For a given density matrix 6 o , this quantity is negative when IPZ I < 1-Ps-Pt . The
minimal value R = -1 is attained when the polarization vector P has its maximum
length 1 (so that the atom is in a pure state) and lies in the x-y plane .

In our special case of the atom in a radiation field, the steady-state density matrix
is determined by equation (2 .21). The resulting expression for the polarization
vector is

-1
P= n2+62+1~ 2

	

~~

	

(4.13)
n2 + 62

By substituting equation (4.13) into equations (4.7) and (4.8), one recovers the
conditions of Walls and Zoller [6] in the special case of free atoms in a
monochromatic field (n = Z) . If we substitute equation (4.13) into equation (4.11), we
obtain

R=S 2 [n 2 b 2 +(n- 1)(n 2 +52)]/(n 2 + 62)(n 2 +6 2 +qC 2 ) .

Squeezed states occur when this quantity is negative, which happens when

(1-n)62 > n2(C2 -1 + n) .

n=i, 8=0, S 2 =i(J2-1) .

(4 .11)

(4.12)

(4.14)

(4.15)

The regions in the n-6 plane where squeezed states are possible are indicated in
figure 4 for various values of ~. For (2 =2, this region coincides exactly with the
region indicated by equation (3 .19), where super-poissonian statistics prevail . One
notes that the regions of sub-poissonian statistics and the regions of squeezing are
rather complementary, even though both phenomena are recognized as essentially
quantum-mechanical .

The strongest reduction of quantum fluctuations occurs at the minimum value
of R,

Rmin = -(\/2-1)2= -0. 1716,

	

(4.16)

and it is attained for

(4.17)
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R)0

Figure 4. Regions in the ii-6 plane where R (equation (4.14)) is positive or negative, for
various values of the reduced Rabi frequency C. Only the boundaries between the
regions are indicated . The relevant C values are (a) C210, (b) (2=0.207, (c) C2 =1 and (d)
~Z

= 10. Curve (b) corresponds to the case where the absolute minimum value of R
occurs, as indicated by equations (4 .16) and (4.17) .

There is a direct physical significance in the components of the polarization
vector P which occurs in equation (4.12) . The total fluorescent intensity as given in
equation (2 .26) obeys the relation

Since Pz will always be negative for a two-state atom, the quantity R as given by
equation (4.12) (or (4.14)) can be put in the form

R= (2I1 -4IR , C)/(A - 2I1 ) .

	

(4.20)

Hence the condition for squeezed states in resonance fluorescence is summarized by
the requirement that the coherent Rayleigh line contain more than half the total
intensity .

5 . Conclusions
We have studied the quantity Q, defined by equation (3.14), which is a

quantitative measure of the deviation from Poisson statistics of the number of
fluorescent photons detected in a time interval . An explicit expression for Q in the

I1 =2A(1 +P.) . (4.18)

The coherent Rayleigh line has a strength [19,12]

IR, ~ = 4A(PX + Py ) . (4.19)
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limit of large counting intervals is given by equation (3 .18) . The region of sub-
poissonian statistics is found to be independent of the value of the reduced Rabi
frequency ~. Super-poissonian statistics can occur for small collisional linewidths
and a small bandwidth of the incident radiation (?1<1), and large detunings, as
indicated in figure 3 . Hence sub-poissonian statistics.i s not a necessary consequence
of the antibunching property of the photons for not too small detection intervals . In
the limit of very small detection intervals, the antibunching property always makes Q
non-positive, which gives sub-poissonian statistics . Figure 2 shows an example of a
reduced intensity correlation function, which exhibits antibunching as expected .
However, when the rapid oscillations are smeared out, the resulting average value
lies above the long-time limit . In this sense the photons show here an average
bunching behaviour .

The quantity Q can never be smaller than -1 for any radiation field, and negative
Q values, or equivalently sub-poissonian statistics, cannot be produced by a classical
field [5] . We have introduced an analogous quantity R (equation (4.12)) as a
quantitative measure of the minimum quantum fluctuations in the components of
the oscillating dipole or the fluorescence field . Negative R values correspond to
squeezed states, which do not have a classical analogue [6,17], and R can never be
smaller than -1 for any state of the radiating atom . For an atom in a driving field, R
is given by equation (4.14) . The regions where R is negative are illustrated in figure 4 ;
the minimum value is -0 .1716 . In general, the regions where squeezed states are
possible are quite different from the regions where the photon statistics have a sub-
poissonian character . For C2 = 2, the two regions in the q-6 plane are exactly
complementary .

We conclude that antibunching, sub-poissonian photon statistics and squeezing
reflect quite different properties of the fluorescence field, even though each of these
characteristics is essentially quantum-mechanical in origin .

Appendix
In equation (3 .7) we give an expression for (the Laplace transform of) the

photon-number probability distribution p,, as a function of the detection probability
a . The probabilities p,, are not independent, and we can obtain p" with n > 1 from the
probability po as a function of a . Moreover, this relation is not restricted to
fluorescent photons . We shall prove these statements in this appendix .

It is often convenient to describe number statistics by a generating function
[13,14]

G(u,a)=<(1-µ)">= Y_ pn(a)(1-p)" .
n=0

(A 1)

(We suppress the dependence on the time interval t in this appendix, but indicate
explicitly the dependence on the parameter a.) Hence the probabilities p" are directly
proportional to the coefficients in the Taylor expansion of G(µ, a) around p =1 . On
the other hand, by differentiating equation (A 1) m times and setting y = 0, we obtain
the factorial moments s m (a), apart from a sign . This leads to the expansion

G(µ a)= I (- µ)m sm(a)m=0 M l
A 2)
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Since sm(a) is proportional to a', according to equations (3 .3) and (3 .1), we find that
G(µ, a) depends only on the product aµ, but not on u and a separately. Hence we may
define a function g that obeys the relation

G(µ, a)=g(aµ) .

	

(A 3)

If we set y=1 in equation (A 1), we find that

g(a ) =po(a),

	

(A 4)

so that

G(µ, a) =po(au) . (A 5)

We conclude that the function g(a), and thereby the generating function G(µ, a) can
be determined experimentally, simply by measuring the probability for detecting
zero photons, as a function of the detection probability .a. According to equation
(A 1), the probabilities p,, are found by taking the nth derivative of G(µ, a), and then
setting u=1 . If we substitute equation (A 5), we obtain the general relation

na)n ( :) Os n p
( a),

	

(A 6)

which allows one to evaluate p„(a) as soon as po(a) is known . It will be obvious that the
validity of the result (A 6) does not depend on the particular shape of the correlation
functions I,,, but only on the fact that the distribution functions C,„--and thereby the
factorial moments-are simply proportional to a' .

In our special case of fluorescent photons, the validity of equation (A 6) can be
checked directly for equation (3 .7) .

On etudie les conditions pour que les statistiques de photons soient sous-poissonniennes et
les etats serres dans le champ de la fluorescence resonnante d'un atome a deux etats . Ces
conditions en fonction du desaccord par rapport a la resonance, de la largeur de raie et de la
frequence de Rabi se recouvrent partiellement, mais elles sont largement complementaires .
Les statistiques superpoissonniennes se produisent pour de faibles largeurs de raie et de
grands desaccords, quelque soit la frequence de Rabi . Les etats serres requierent de faibles
largeurs de raie et des frequences de Rabi basses ou moderees, ou encore de grands desaccords
par rapport a la resonnance .

Wir untersuchen die Bedingungen fur Sub-Poisson-Photonenstatistik and fur `squeezed'
Zustande im Resonanzfluoreszenzfeld eines Atoms mit zwei Zustanden . Diese Bedingungen
haben als Funktion der Verstimmung aus der Resonanz, der Linienbreite and der Rabi-
Frequenz einen gewissen Uberlapp, sind aber sonst weitgehend komplementar . Super-
Poisson-Statistik tritt auf bei kleinen Linienbreiten and starken Verstimmungen, ungeachtet
der Rabi-Frequenz `Squeezed' Zustiinde erfordern kleine Linienbreiten and entweder
niedrige bis malige Rabi-Frequenzen oder grol3e Verstimmungen aus der Resonanz .
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