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Abstract. We incorporate in the theory of collisional redistribution of resonance radiation 
the effect of a finite bandwidth of the intense incident radiation. The phase of the radiation 
is treated as a process with independent increments, which contains the phase-diffusion 
model as a special case. These phase fluctuations give rise to effective decay operators 
affecting the evolution of the density matrix and the regression of the correlation function. 
For a two-level atom suffering binary collisions the combined effect of collisions and 
phase fluctuations on the fluorescence spectrum is evaluated in several limiting cases of 
practical interest. 

1. Introduction 

The response of atomic systems to intense and stochastically fluctuating radiation 
fields near resonance is of practical importance since the availability of tunable laser 
sources. The processes studied include multiphoton ionisation (Zoller 1979a, 1982), 
AC Stark splitting in double optical resonance (Zoller 1979b, Georges and Lam- 
bropoulos 1979, Zoller et a1 1981), two-photon absorption (Salomaa 1978) and in 
particular resonance fluorescence (Agarwal 1976, 1978, Eberly 1976, Kimble and 
Mandel 1977, Avan and Cohen-Tannoudji 1977, Zoller 1977, 1978a, b, Knight et a1 
1978, W6dkiewicz 1980, Chaturvedi and Gardiner 1981, Georges and Dixit 1981). 
The laser models studied most extensively include the phase-diffusion model (Agarwal 
1976, 1978, Kimble and Mandel 1977, Zoller 1977, 1978a, Wddkiewicz 1980), which 
is expected to give a fair representation of an intensity-stabilised single-mode laser 
well above threshold, and the chaotic field with Gaussian amplitude fluctuations (Zoller 
1979a, b, Georges and Lambropoulos 1979), which provides a reasonable description 
of a multimode laser. 

Another line of research during the last decade concerned the collisional redistribu- 
tion of monochromatic radiation, both for low (Omont et a1 1972, Nienhuis and 
Schuller 1977, Burnett and Cooper 1980) and high (Burnett et a1 1982, Nienhuis 
1982, Reynaud and Cohen-Tannoudji 1982) intensities. 

In the present paper we study the combined effect of collisions and laser fluctuations 
on the spectrum of resonance fluorescence. This problem is important in order to 
disentangle the collisional effects from the observed total fluorescence spectrum excited 
by intense laser radiation, which in general is not quite monochromatic. At the same 
time this study enables us to compare both types of broadening effects. As a model 
for the phase fluctuations of the incident radiation we take a jump-like Markov process, 
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which has the phase-diffusion model as a Gaussian limit. The effect of these fluctuations 
on the evolution of the average density matrix of the particle system, and on the 
regression of the average dipole correlation function can be expressed in terms of 
equivalent Liouville operators containing additional effective damping operators. 
Previous results (Nienhuis 1982) for the fluorescence spectrum in the binary-collision 
approximation can then be directly applied to the present problem, giving rise to 
simple expressions for the widths and the strengths of the lines in the fluorescence 
spectrum in special limiting cases. 

2. General expression for the fluorescence spectrum 

A single active atom in a bath of N perturbers is irradiated with phase-fluctuating 
light with central frequency wL, polarisation cL and amplitude Eo. The radiation 
drives the transition between the ground level (g) and an excited level (e) of the atom, 
which may both consist of several degenerate or nearly degenerate substates. Coupling 
with other levels is ignored, and we neglect collisional coupling between the ground 
level and the excited level. 

The evolution of the density matrix p ( t )  of the entire particle system is governed 
by the Liouville equation 

where r denotes the effect of spontaneous emission of the atom, and where the full 
Hamiltonian is 

(2.2) 

with Ha the Hamiltonian of the free atom, and H, the Hamiltonian of the ith perturber, 
including its interaction with the atom. Interactions between perturbers are ignored. 
The interaction Ha, between the atom and the classical radiation field in the rotating- 
wave approximation is expressed as 

H ( t )  = Ha + 1 HI + Ha,(t)  
I 

H,,(t) = -idLEo exp(-iwLt - it+b(t)) +Hermitian conjugate (2.3) 

where dL = gL * p is the component of the raising part of the atomic dipole in the 
polarisation direction. The phase 4(t)  of the radiation field will be treated as a 
stochastic process, which turns the Liouville equation (2.1) into a stochastic differential 
equation. We denote as T(t ,  t ’ )  the evolution operator that transforms p ( t ‘ )  into p ( t )  

(2.4) 

so that T obeys the same Liouville equation as p, with the initial condition T(t’ ,  t’) = 1. 
We wish to eliminate the rapid oscillations with the optical frequency wL, by the 

stochastic transformation 

(2.5) 

(4.) 

P ( t )  = T(t ,  t ’ ) p  (0 

P O )  = exp[-i(wlt + t+b(t))Kldt) 

KcT=~[P,-P,,cT]=[P,,cT] (2.6) 

with 

where P, and Pg are the projection operators on the substates of the excited level 
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and the ground level. The evolution operator U(t, t’) that transforms a(t’)  into a(t) 
obeys the effective Liouville equation 

-U(t,t’)=(-ild-ixLi-I’+i$(t)K) d U(t,  t’) 
dt i 

(2.7) 

where Li indicates a commutator with Hi, and Ld is a commutator with an effective 
(dressed-atom) Hamiltonian 

i i 
h ti -iLda = --[Hd, a ]  = - -[H a -’ 2dLE0 - kdLEO, a ]  + iwLKa. (2.8) 

The spectrum of resonance fluorescence with polarisation E is proportional to the 
Fourier-Laplace transform of the autocorrelation function of d = p ( + )  E .  We can 
express this correlation function in terms of the transformed density matrix and 
evolution operator by applying the identity 

Tr d t  T(t, O)(p(O)d) = exp(-iwLt) Tr d t  Ur(t, O)(a(O)d) (2.9) 

where the evolution operator U ,  that determines the regression of the correlation 
function is related to the evolution operator U by the equation 

Ur(t, t‘) = exp(-i$(c)+i$(t‘))U(t, t’). (2.10) 

We conclude that the spectral power of the fluorescence with polarisation E emitted 
per unit solid angle is given by the formal expression 

I ( w )  =-Re dt exp[i(w -wL)t](Tr d’ U,(t, O)(cr(O)d)) 
?r a JOm (2.11) 

where a = W ~ / ~ ? T ~ E ~ C ~ ,  and where the angle brackets denote an average over the 
probability distribution of the stochastic phase. It is worth mentioning that the 
regression operator U, obeys the Liouville equation 

(2.12) d 
- ur(t ,  t’) = ( -ild - i L~ - r + itj(t)(K - 1)) Ur(t, t’) 
dt i 

which differs from the equation (2.7) for the evolution operator U that describes the 
time behaviour of the density matrix a(t). Obviously both ~ ( 0 )  and U,(t, 0) in (2.11) 
are stochastic quantities, due to their dependence on the fluctuating phase. 

In the next section we shall perform the stochastic average by adopting a specific 
model for the fluctuating phase. 

3. Stochastic average of evolution and regression 

We treat the phase of the incident radiation as a process with independent increments 
(Van Kampen 1981). This means that (I, is a Markov process with a conditional 
probability P($, ti$‘, t’) that depends only on the time interval t -- t‘, and on the phase 
difference (I, - 4’. Then the transition probability per unit time from the phase $’ to 
the phase (I, must be a function w ( q )  that is independent of time, and depends only 
on the phase increment q = $ - $’. The time-dependent probability distribution 
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function P($, t )  then obeys the master equation: 

This corresponds to the physical picture that the phase 9 makes a random jump at 
independent random instants. The transition rate w (q) is normalised to the frequency 
of the random instants, and its shape gives the distribution over the sizes of the jumps. 
The same model has been applied to free atoms by Zoller and Ehlotzky (1977). 

We now consider an operator V ( t )  that obeys the Liouville-type equation 

with an initial condition V(0)  = Vo that does not depend on the phase values $ ( t )  for 
t > 0. In the appendix we prove that the stochastic average of V obeys the non- 
stochastic differential equation 

d -(v(t))= (-Lo- W ) ( V ( t ) )  
d t  (3.3) 

where W is an effective decay operator defined by 

W = dq w ( q ) [ l  -exp(-iqL~)]. (3.4) I 
Obviously the initial value of (V)  is (V(0) )  = ( Vo). With this initial condition equation 
( 3 . 3 )  determines the stochastic average of V ( t )  for all positive times. 

We can apply this result directly to the operator U&, O)(a(O)d) in (2.11), since 
the initial density matrix a(0) at time zero cannot depend upon the stochastic phase 
$ ( t )  at positive times. Furthermore the same result can be used to obtain an effective 
evolution equation for the average density matrix (c(t)), which in turn determines 
the average steady-state density matrix a. Hence the average correlation function in 
(2.1 1) can be expressed as 

(Tr d' U&, O)(c(O)d))  = Tr d t  a&, O)(@d) (3.5) 

where the average regression operator Or is determined by the effective Liouville 
equation 

with W, given by equation (3.4) after substituting 1 -K for L1.  The density matrix 
a in (3.5) is the steady-state limit of the solution of the effective evolution equation 

where now We is given by equation (3.4) after substitution of -K for L1.  
The eigenvalues of K are immediately obvious from the definition (2.6). It gives 

zero when operating on a density matrix that has no matrix element coupling the 
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excited states and the ground states, it has eigenvalue 1 when operating on a part 
PeuP, of the density matrix that couples ground states to excited states, and it has 
eigenvalue -1 when operating on a part P,uPe that couples excited states to ground 
states. When we introduce the parameters 

the operators We and W, can be specified by their action on an arbitrary density 
matrix U, according to the relation 

W,U = A 1 P,UPe + A - 1 PeuPg (3.9) 

(3.10) W ~ U  = A 1 (PeUPe + PguPg) + A 2PgUPea 

Without loss of generality we can assume that the average increment in a phase jump 
is zero, since a non-zero average could be incorporated as a shifted frequency wL. 
Moreover, one would normally assume that w ( q )  is an even function, which would 
make the parameters hk real, and independent of the sign of k. 

From the appendix it follows that 

for t > t‘. Hence A determines the decay of the autocorrelation function of the electric 
field, and therefore A I  is the bandwidth (HWHM) of the incident radiation, which has 
a Lorentzian profile. Only the parameters A 1  and h2  show up in the spectrum of 
resonance fluorescence. 

The phase-diffusion model is recovered if we assume that the phase fluctuation is 
a Gaussian process, so that all cumulants higher than the second vanish (Stratonovich 
1963, Van Kampen 1981). This means that all moments of w ( q )  higher than the 
second vanish, which corresponds to the limit of very frequent, very small phase 
jumps. From (3.8) we then find 

Hence in the Gaussian limit the two parameters h l  and A 2  are related according to 
A 2  = 4h 1,  whereas in general these two parameters are independent. 

4. Binary-collision approximation 

In the previous section we obtained equation (3.5), which expresses the average 
correlation function in a non-stochastic form with effective decay operators W, and 
We. After substitution of this equality in equation (2.11), the resulting expression for 
the fluorescence spectrum has exactly the same structure as in the case of monochro- 
matic irradiation. In the case that only binary atom-perturber collisions occur, the 
spectrum can be expressed entirely in operators acting on the density matrix of the 
atom alone, either by projection-operator techniques (Burnett and Cooper 1980), or 
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by truncation of a BBGKY hierarchy (Nienhuis 1982). The result is 

I(w) = ( a / ~ )  T r d '  [@(U - w L ) +  W,+r+iLd-i(w -wL)]-l(c+od + C ( w  - w L ) ~ o ) .  (4.1) 

The effect of the relaxation operator @ on an atomic density matrix is 

where p,(l) is the equilibrium density matrix of perturber 1. The correlation operator 
C describes the effect of fluorescent emission during a collision, and it is important 
only when U - w L  has a value far from the eigenvalues of Ld. It is defined by the 
equation 

An infinitesimal positive imaginary part should be included in w for reasons of 
convergence. Strictly speaking, Ld should be read as Ld-i(  W,+r)  in (4.2) and in the 
first denominator in (4.3), whereas in the second denominator Ld should be Ld- 
i( We + r). However, in these single-collision operators the decay operators are 
effective only for the duration of a collision -r,, and when both the natural linewidth 
and the radiation bandwidth are small compared with the inverse duration of a collision, 
the decay operators r and W are negligible in (4.2) and (4.3). On the other hand, 
when the bandwidth is not small compared with 7i1, the effect of W, in (4.1) is 
dominant over the effect of the relaxation operator 0, which is of the order of the 
collision frequency, and then collisional broadening effects in (4.1) are obscured 
altogether. We conclude that it is appropriate in all cases to use the expressions (4.2) 
and (4.3), which are identical as in the case of monochromatic irradiation. 

For the steady-state reduced density matrix 5o of the atom in (4.1) we must take 
the eigenvector with eigenvalue zero of the effective one-particle evolution operator 
@ ( O ) + r +  We+iLd (Nienhuis 1981). 

The net effect of the phase fluctuations on the fluorescence spectrum is now twofold. 
Firstly, in the rate equation determining the steady-state density matrix eo, the decay 
of coherence between the excited levels and the ground state is enhanced with the 
bandwidth A 1. Hence also the integrated fluorescent intensity can only depend upon 
this bandwidth A l .  Secondly, in the regression of the correlation function, which 
determines the spectral distribution, the diagonal part of the operator O(e0d) gets 
an additional decay rate A I ,  and the decay of the part coupling the excited states to 
the ground states is enhanced with the term AZ, according to equation (3.10). 

5.  Two-state atom 

Virtually all papers so far dealing with finite-bandwidth effects in atomic optical 
resonance have ignored possible degeneracy of the atomic levels. The formal result 
of the previous section holds equally well for transitions between atomic multiplets 
of degenerate states. In this section we shall work out in more detail the fluorescence 
spectrum of a two-state atom, and we mainly follow the notation of two previous 
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papers (Nienhuis 1981, 1982). Moreover, we are mainly interested in the spectrum 
in the neighbourhood (-711 ) of the transition frequencies of the dressed atom, where 
the effect of the correlation operator C may be ignored. 

5.1. Modificution in the fluorescence spectrum 

The various operators occurring in (4.1) can be represented as four-dimensional 
matrices in the case of a two-state atom. As usual (Reynaud and Cohen-Tannoudji 
1982, Nienhuis 1.982) we choose the unit matrix and the three Pauli operators as basis 

The relaxation operator may be assumed to have matrix elements only between the 
basis elements S,  and S,. The dressed-atom Hamiltonian H d  takes the form 

ffd=-ffi(RSx +AS,) (5.2) 

where SZ = dLEo/h is the Rabi frequency, and A = w L - w e g  is the detuning of the 
central frequency from resonance. 

The steady-state density matrix Cro can be expanded as 

a0 = f ( l  + ij S) (5.3) 

and it is an eigenvector of @(O) + r + We + i L d  with eigenvalue zero. On the basis (5.1) 
this operator has the matrix representation 

0 0 0 0  
( b  G @(O) + r + We + iLd = 

where b is a three-dimensional vector, and G is a three-dimensional 

(5.4) 

matrix 

o \  

with A the spontaneous emission rate. 
The steady-state density matrix Cro is obtained by substituting into (5.3) 

P = - G - ' . b .  (5 .6)  

In order to evaluate the spectrum (4.1), we also need the matrix representation 

(5.7) 

where h = o - wL, and where the three-dimensional regression matrix is 

iA  +@xx(h)+ih2- iA -A+@,,(A)+$hZ 0 
G , ( A ) =  A+@,,(A) - ; A 2  $A+OY,(A)+fA2-ih -a 1. (5 .8 )  1 0 n A + h l - i h  

The inversion of the matrix (5.7) can now be expressed in GK', and we obtain an 
expression for the fluorescence spectrum of a two-state atom in the form of matrix 
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elements of G-' and G;' 

- A+A1-ih  
(1 -i 0) G,(A)-' - b 

ih-A1 

As in a previous paper (Nienhuis 1982) this result can be explicitly evaluated without 
difficulty, by substitution of (5.5)-(5.8), and the effect of the finite bandwidth is 
immediately tracked down. The resulting general expression is, however, not very 
illuminating except in some special cases, which we shall now consider. 

5.2. Limit of large bandwidth 

We consider the case where the bandwidth of the incident radiation is large compared 
with the natural and collisional linewidths, and therefore we assume that A l ,  A 2  >>A, 0. 
One readily checks that then the first term in (5.9) is negligible compared with the 
second one. 

When A1 is also large compared with n, A, A, then n must be small compared 
with T,', and we may substitute for the matrix elements of @ their limits for n+O 
(Nienhuis 1982) 

lim O x x ( A )  = lim @.,,(A) =$[q5(w)+q5*(2wL-w)] 
fl-0 fl-0 

(5.10) 
lim aYx (A) = -1im a,, (A) = i[4 (w ) - 4 *(2wL - w )I 
fl-0 fl-0 

where q5 ( w )  = y ( w )  + ip ( U )  with y and p the frequency-dependent collisional width 
and shift, pertaining to the unified theory of line broadening. As an approximate 
expression for the fluorescence spectrum in this limit of large bandwidth we obtain 

I ( w )  = (An2/27r) Re[(AIA +n2) ( iA  +q5(w)-iA-iA+Rz/2A1)]-'. (5.11) 

Saturation begins to occur when n2 becomes comparable with AIA. The spectrum 
(5.11) is a single spectral line at the same position as the low intensity absorption 
line. (Note that A + A  = w -weg.)  The rate of stimulated transitions az/2A1 enters as 
an additional radiative contribution to the linewidth. 

When Cl and A l  have the same order of magnitude, and are both large compared 
with A and a, then collisional effects in the fluorescence spectrum become negligible, 
and we find the limiting expression 

I ( @ )  = ( A / ~ T )  Re[2(A - i A ) ( h ~  - iA + iA) + fl2] 

x [ (~A2- iA)~2- i (A+A)(A1- iA) (Az- iA+iA) ] - ' .  (5.12) 

This limiting expression is, of course, identical to the corresponding limit for free 
atoms (e.g. Kimble and Mandel 1977). 

5.3. Limit of well-separated lines 

For large values of the Rabi frequency or of the detuning A, the spectrum separates 
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into three lines, at least for monochromatic incident radiation (Mollow 1969, 1977), 
and the separation between the lines amounts to 

O’=A(l+R2/A2)1’2. (5.13) 

The strengths and the widths of the lines contain information on optical collisions, 
defined as collisional transitions between the eigenstates of the dressed-atom Hamil- 
tonian (5.2) (Burnett et a1 1982, Nienhuis 1982, Reynaud and Cohen-Tannoudji 
1982). These eigenstates are 

(5.14) 11) = - le) sin $e + Jg) cos $e 12) = le) cos $0 + Ig) sin le 
with eigenvalues 

E -  1 2 - - 2h.n‘. 

-;IT < 0 < TIT. 

E -1 1 - 2hO‘ 

tan 0 = a/A 
The angle 8 is defined by 

1 

(5.15) 

(5.16) 

We now consider the case where a’ is the dominant parameter in the problem, 
and we require a’ >>A A ,  (D. Then the broadening due to collisions, radiative decay 
and the finite bandwidth are insufficient to cause appreciable overlap of the lines, and 
a separate measurement of their widths and intensities remains possible. For the 
theoretical evaluation of these quantities it is sufficient to assume that the steady-state 
density matrix eo is diagonal in the dressed states (5.14), and to ignore coupling 
between different eigenvectors of the dressed-atom LiouvillianLd during the regression 
(Nienhuis 1982). 

The steady-state density matrix eo in this limit is the eigenvector with eigenvalue 
zero of (D(O)+T+ We+iLd, projected on the subspace spanned by 12)(21 and ll)(l]. 
On this subspace, this operator has the matrix representation 

with 

p =A[(l+cos 8) /2l2+k(R,  A) 

q =A[(1  -COS 0)/212+k(R, A) 

r = $ A 1  sin2 0 

where 

k(a, A ) =  -Trll)(l1@(0)12)(21 
is the rate of optical collisions. The steady-state density matrix eo is now 

(5.17) 

(5.18) 

(5.19) 

eo= (12)(q +r)(21+lNp + m / ( P  + 4  +2r) .  (5.20) 
The finite bandwidth A 1  tends to make the population of the dressed states more 
equal, and it has the same effect as an enhancement of the rate of optical collisions. 

The Liouville operator Ld has 12)(11 as eigenvector with eigenvalue -R’, )1)(21 as 
eigenvector with eigenvalue Q’, and the two eigenvectors )2)(21 and 11)(11 with 
eigenvalue zero. Each of these three eigenvalues gives rise to a line in the emitted 
spectrum, the fluorescence line at w = wL - a’, the three-photon line at w = wL+ Cl’ 
and the Rayleigh line at w = wL (Carlsten et a1 1977, Courtens and Szoke 1977). The 
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strengths and widths of these lines are found by projecting the regression operators 
in (4.1) or (5.9) on the eigenvectors corresponding to each one of these eigenvalues. 
The projected parts of r and 0 are derived before (Nienhuis 1982), and the contribu- 
tion of W,  is evaluated in the same fashion. On the subspace spanned by 12)(2/ and 
ll)(ll, which corresponds to the Rayleigh line, the regression operator can be taken 
as 

(5.21) 

with p and q given by (5.18), and 

s =Al+(A2-2A1)sin2 8/4 t = (A2-2A1) sin2 6/4. (5.22) 

The fiuorescence line and the three-photon line have simple Lorentzian profiles, and 
the Rayleigh line is the sum of a coherent and an incoherent component, both of 
which are Lorentzian. The entire spectrum in the limit of large values of $2' is found 
to be 

I ( w )  = r-'Sf Re[yf + ipf - i(w - w L  + Cl')]-' + .rr-'S, Re[y, + ipt - i(w - wL - a')]-' 
+ r- 'SrC Re[yrc - i(w - wL)]-l+ r-lSri Re[ yri - i(w --aL)]-'. (5.23) 

The line strengths are given by 

s,=- A p + r  ( 1 - c o ~ 6 ) ~  
4 p + q + 2 r  

A q + r  ( i+cose)2  'f = 4 p + q + 2r 

s , , = L ~  sin2 e ( p - q ) * / ( p + q + 2 r ) ( p + q + 2 ~ )  (5.24) 

Sri =+A sin2 8 [ ( p  + t ) (q  + r ) +  ( p  +r)(q  + t ) ] / ( p  +q +2r) (p  +q +2t) .  

The linewidths and shifts are 

y f +  iPf = 'Pf+$A(2 + sin2 6) + (1 -cos 6)A + [;(l -cos 6)I2(A2 - 2A 

7 ,  +ipt  = @,+$A(2 +sin2 6) + (1 +cos @)A1 + [$(l +cos 6)I2(A2 - 2A ') (5.25) 

Y r c = A l  

The collisional contribution to the width and shift of the fluorescence line and the 
three-photon line are 

'Pf = Tr~1)(2~'P(--ll')[2)(1~ @,=~~=Trl2) ( l l~($2 ' ) l1) (21 .  (5 .26)  

For a semiclassical description of the collisions, these quantities acquire a simple 
expression in terms of matrix elements of the semiclassical scattering matrix (Nienhuis 
1982). 

The contributions of the finite bandwidth to the strengths, and the widths are 
contained in the parameters r, s and t. The strengths Sf and S,  can be written in the 
form 

(5.27) 

yr, = p  +q + s  + t. 

Sf=AA(l  +cos 8)2(1 - M )  St = iA(1  -COS q2(1 + M )  

with 

= ( P  - q ) / ( p  +4  +2r).  (5.28) 

The finite-bandwidth effect diminishes M,  thereby increasing the fluorescence strength 
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Sr and decreasing the three-photon strength S, .  The total strength of the Rayleigh 
line is 

(5.29) 

independent of the bandwidth and of collisions. However, increasing the bandwidth 
transfers intensity from the coherent component to the incoherent one, and also in 
this respect the finite-bandwidth effect resembles the effect of collisions. In the special 
case of the phase-diffusion model we have A 2  = 4A1, so that r = t. Then the quantity 
M also determines S,,  and Sri, according to the relation 

(5.30) 

and the analogy between the effect of the finite bandwidth and of collisions on the line 
strengths is complete for the phase-diff usion model. 

The effects on the linewidths are rather different. All linewidths are increased by 
a finite bandwidth. For moderate values of SZ/A, this increase is smaller for the 
fluorescence line than for the three-photon line. The coherent Rayleigh line has the 
same linewidth A l  as the incident radiation, as one would expect. 

s,, + sri = &4 sin2 e 

s,, = L4 sin2 e M’ sri = b sin2 e (1 - M*)  

6 .  Conclusions 

The effects of phase fluctuations of the driving radiation on the spectrum of resonance 
fluorescence can be formally incorporated by including effective decay operators W, 
and We in the regression of the dipole correlation function and in the evolution of 
the average density matrix, as indicated in equations (3.3)-(3.6). This result holds 
equally well for free radiating atoms as for atoms in a bath of perturbers. The decay 
operator We depends only on the linewidth A I  of the incident radiation, and the 
operator W, also contains the parameter A 2 ,  as defined by (3.8). The binary-collision 
approximation of the formal result is obtained by standard techniques. The combined 
action of phase fluctuations and collisions is best illustrated for a two-state atom. In 
the case when the bandwidth is large compared with the collisional linewidth, the 
fluorescence spectrum contains a single line with a profile determined by the low- 
intensity frequency-dependent absorption linewidth, and by a power-broadening para- 
meter. This result is expressed in equation (5.11). At very high intensities, when the 
Rabi frequency SZ is comparable with the bandwidth A ,  the collisional broadening is 
completely masked, as indicated in equation (5.12). 

Of more practical interest for collision studies is the case where the bandwidth of 
the incident radiation is small compared with the separation between the lines in the 
Mollow triplet. The dominant parts of these lines are then given by equation (5.23), 
and the strengths and the widths of these lines are affected by collisions as well as by 
the phase fluctuations. An increase of the bandwidth has the same effect on the line 
strengths as collisions leading to an increase of the fluorescence line, a decrease of 
the three-photon line, and transfer of intensity from the coherent Rayleigh line to 
the incoherent one. The asymmetry of the spectrum, which was already present as a 
result of collisions, is further enhanced by the finite bandwidth. When one wants to 
use the line intensities in order to determine the rate of optical collisions, it is essential 
to take the phase fluctuations into account. 

On the other hand, the two broadening effects have a rather different result for 
the linewidths. The fluorescence line is much less broadened by the phase fluctuations 
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than the three-photon line, whereas the collisional broadening of these two lines is 
the same. The coherent Rayleigh line reproduces the profile of the incident radiation, 
and the incoherent Rayleigh line is both broadened and strengthened by the phase 
fluctuations. The corrections on the linewidths due to the finite bandwidth are 
expressed as simple additive corrections in (5.25). 

Appendix 

We wish to prove the differential equation (3.3) for the average of an operator V 
that obeys the stochastic differential equation (3.2). For a given initial value G(0) = Go 
of the phase we introduce the characteristic function of the phase increment: 

f k ( l )  = (exp[- ik(~(t)  - $ 0 ) ~  = j dGP(4, t )  exp[-ik(G - C L ~ ) I  (A.1) 

where P is the conditional distribution function with the initial condition P($, 0) = 

S(+h-i,bo). After taking the time derivative of (A.l) ,  and substitution of the master 
equation (3.1), we obtain 

with A k  given by (3.8). Since f k ( 0 )  = 1, the function f k  is independent of the initial 
value Equation (3.11) then follows by a trivial time translation. 

As a generalisation we introduce the functional 

F( t )=(exp(- i  I 'ds&(s)k(s ) ) )  0 (A.3) 

for an arbitrary function of time k ( t ) .  For an infinitesimal time increment dt we then 
obtain 

F(t +dt)  = exp[-i(q+(t + dt) - $ ( t ) ) k ( t ) ]  exp( -i Jo' ds $(s)k (s))) . ( (-4.4) 

Since 4(t)  is a Markov process by definition, and since the conditional average of 
the first exponential in (A.4) is independent of the initial value 4(t) ,  we can write 

F ( t + d t ) = ( l - d t l  dq w(q ) ( l - e  - i k ( r h ) )  F ( ~ )  (A.5) 

and the result for F ( t )  is 

F ( t )  = exp (-jot ds dq w (77 )( 1 - e-ik(s)")) . 

In order to prove (3.3), we first write the formal solution of (3.2) in the form 

V ( t )  = exp( -i Iotds $ ( s ) i , ( s ) )  V0 (A.7) 

with ~ I ( S )  = exp(iLos)L1 exp(-ilOs), and 8 the Dyson time-ordering operator. Since 
(A.6) holds for an arbitrary function k ( t ) ,  and since averaging and time ordering are 
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commuting operations, the average of (A.7) takes the formal expression. 

(V( t ) )  = exp( - J’: ds d7 w ( q ) ( l  ( Vo). 

Equation (3.3) follows after time differentiation of (A.8). 
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